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I. Introduction 

After extensive testing of the Pulsotron-2A z-

pinch device and several ion accelerators using 

the Pulsotron-2B device it was found that it is 

necessary to design fusion devices that reduce 

the electron temperature to decrease loses [14] 

[15] [16]. The Pulsotron II 2A device consists of a 

small Z-pinch device and the Pulsotron II 2B 

represents a modification of a capacitor bank to 

be used in several tests related to plasma 

confinement. The Z-pinch successfully achieved 

the required pressure but with a low plasma 

temperature. In order to design a boron-proton 

fusion reactor it was designed an electrostatic 

and a magnetic ion accelerator but the design of 

a confinement chamber is still needed. In the 

present work the results reached after simulating 

145,000 different magnetic toroidal Tokamak-like 

design are presented. The chamber is designed 

to sustain boron-proton fusion. The Boron fuel 

state will be Ions with one or more positive 

charges B.  

The Larmor radius of the protons is taken to be 

the major radius R instead of the minor one that 

would require much larger magnetic fields. Boron 

can be injected at low speed but must be 

confined within the higher concentration of 

protons. In this first simulation campaign, only 

protons are used in order to determine which 

reactor configuration is the best candidate. The 

losses are calculated from the ion acceleration 

and a Larmor radius equal to chamber major 

radius for a confinement time of 0.59 ms for a 

small 200 mm reactor, so losses are about 5.47 x 

10
-24

 watts according to the excel table found in 

[17], formula 41, so less than one eV is lost by the 

protons during their confinement. Defining the 

Larmor radius as the major radius of the 

chamber the reactor chamber dimensions can be 

greatly reduced as, for example, a 500 keV proton 

whose mass is 1.66 x 10
-27 

kg has an approximate 

speed of 9.8222 x 10
6
 m/s, so when submitted to 

a 1.5 Tesla magnetic field (easily achievable in a 

small reactor), the Larmor radius decreases to: 

𝑅 =
𝑚𝑣

𝑞𝐵
= 6.787𝑥10−3𝑚. Hence, a proton plasma 

can theoretically be confined in a small 135 mm 

diameter torus. In the simulation the particles 

leaving the torus are taken into account as losses. 

In real toroidal systems, coils would be installed 

to recover electricity from lost ions and to slow 

them down to non-harmful kinetic energy levels. 

The main coils would receive some proton flux, 

but this was not calculated in this round of 

simulations. In the simulation copper wires are 

used instead of superconductive coils that would 

suffer less from ion bombardment.  

The chamber is designed for high temperature 

aneutronic fusion. To deal with the extremely 
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high ion speed a new configuration design is 

used. Additionally, a new parameter Aeff gives the 

effective cross section of the reactor that can be 

used to obtain the percentage of reacting 

particles inside the reactor in a direct way. C++ 

source code used in the simulation is also 

provided which equations are described in more 

detail in [2, 3, 5]. The main objective was to find 

the feasibility of using a tokamak-like 

configuration to allow the fusion reactions inside. 

The configuration must allow the installation of 

direct electricity recovery coils to be used to 

extract currents from the generated alpha 

particles. 

Particles energy was assumed to be 500+12 keV 

which is close to the maximum cross section [5] 

with angle distribution of + 20º obtained from 

elastic scattering [9-11, 6]. 

II. Equations and algorithms used 

The percentage of the particles that react can be 

obtained using the following formula: 

 𝑅 = 𝑁 ∗ (1 − 𝑒
−𝑁∗𝑡∗

𝜎

𝐴𝑒𝑓𝑓) (1) 

Where:  

N is the number of particles (protons or borons) 

σ=cross section of the P-
11

B reaction, 

Aeff=Effective cross section of the reaction, t = 

average laps number of particles paths. All areas 

are taken in square meters. 

The maximum cross section for proton-
11

B fusion 

is 0.8 x 10
-28

 m
2 

(0.8 barns) accordingly EXFOR 

database [4]:

 

Figure1: Cross section of the Boron11-Proton 

fusion. 

 

The exponential part of the reactor equation (1) 

must be about 1 in order to allow the reactions 

between most of the particles, so Eq. (1) can be 

used to calculate how many particles must be 

injected into the chamber. In order to have highly 

accurate and speedy simulations the C++ 

multithread technology was used to run high 

speed algorithms that apply elliptic integrals. As 

reference equations and codes collected from the 

book by J. D. Jackson [3] were used. The mutual 

inductance and inductance calculations uses 

Maxwell’s Method [2] and the equations can be 

can be found at [13]. The obtained results of 

inductance and magnetic field were checked 

against the general equations of magnetic fields 

for standard devices, such as loops and wires. 

Furthermore, test devices were built and tested 

using standard magnetic field sensors, 

oscilloscopes and current sensors. With only one 

hundred simulations the achieved Aeff was too 

low, so an increase in the number of simulations 

to more than 10 thousands of tokamak-like 

configurations. To do that an initially low particle 

number of 16 was simulated and subsequently 

increased to 196 particles in those toroidal 

configurations that achieved longer confinement 

time and lower Aeff. Also the genetic algorithm 

was used to generate vectors of data input in the 

more promising reactors. 

II.a) Validity of Eq. (1) 

The validity of Eq. (1) exponential part can be 

easily demonstrated using a small excel table 

using as example Nσ/A=0.02 where the 

remainder particles reacts each other every turn. 

As can be seen the exponential equation 

simplifies results:  

 

Table. 1: Comparison of exponential part of Eq. (1) 

to obtain the remainder of particles. 

N*σ/A 0.02

Turns

remainder 

particles

Reacted 

particles exp(-Nσ/A)

0 1 0.02 1

1 0.98 0.0196 0.9802

2 0.9604 0.019208 0.9608

3 0.9412 0.018824 0.9418

4 0.9224 0.018447 0.9231

5 0.9039 0.018078 0.9048

6 0.8858 0.017717 0.8869

7 0.8681 0.017363 0.8694

8 0.8508 0.017015 0.8521

9 0.8337 0.016675 0.8353

10 0.8171 0.016341 0.8187

11 0.8007 0.016015 0.8025

12 0.7847 0.015694 0.7866
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III. Assumptions 

The particles are injected when the magnetic field 

is saturated so there are only slow magnetic field 

variations. According to the simulations the 

maximum B-field is reached between 5 

milliseconds and some seconds to values that 

ranges from 0.43 teslas for larger coils to 1.6 

teslas for smaller ones. 

The particles energy is 500+12keV according to 

the Miranda particles injector specifications. The 

particles angle distribution is +20º, according to 

our simulations taking into account kinetics 

scattering data obtained from [6, 10, 11]. The 

magnetic field was simulated in different 

configurations by using Biot-Savart’s law 

integrating along every coil. In order to calculate 

the inductance with high accuracy during short 

time elliptic integrals were applied along with the 

multithread technology. Using fixed time and 

length steps generates large errors in the coils 

proximity so the spatial increment in the 

proximity to the coils has to be narrowed down 

from one millimetre to less than 1 micrometre. 

 

IV. Simulation Setup 

In order to have high accurate simulations and 

speed the C++ multithread technology was used 

to run the algorithm, which works on the basis of 

elliptic integrals. 

Figure 2: Plot of particles running inside a 280mm 

diameter Tokamak of 6 toroidal coil 

A large amount of different configurations were 

simulated using only 16 particles at the beginning 

but the best results were obtained with 196 

simulation particles. 

IV.a) Input data 

The main input data are the dimensions of coils, 

number of turns t, energy injected and proton 

energy (550 keV). Simulations were performed 

with 2 to 20 toroidal coils and up to 4 parallel 

coils (but more coils can be set). 

 
Figure 3: Plot of particles running inside a 280mm 

diameter Tokamak of 4 toroidal coil. 
 

V. Performance of the simulator 

Using low particle simulations allows a reduction 

in simulation time from some minutes per 

reactor to 10 tokamak configurations per second. 

If a particle passes close to a coil, the magnetic 

field gradient is higher so more calculation points 

are taken and the calculus is slower. One 

software thread per particle was used, so when a 

particle escapes to the reactor wall its thread is 

terminated. Hence, a better confinement in the 

reactor increases the escape time for particles 

and the simulation runs slower. The time 

consumption for one simulation is directly 

proportional to the particle number and the 

confinement time of the particles. It turns out 

that with only 9, 16 or 25 particles one can have 

similar results as with 196 or more particles. 

Hence, such preliminary results can be used for 

comparison purposes to filter out the best 

reactors before using a larger number of particles 

as can be seen in following graphs: 

 
Figure 4: Simulation using up to 200 particles. 
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By using more particles the simulation result 

stabilizes: 

 

 

Where Lmed is the average particle path length of 

a proton before it escapes to the container walls. 

The best reactors have particles travelling up to 

800 meters (see Fig 8). 

VI. Simulation results 

Initial results demonstrate that the Aeff was so 

high that very few particles could react within the 

confinement region. As can be seen from the 

following data in Table 2, Aeff was larger than 2 x 

10
-3

 m² for tokamaks of 0.32 meters major radius, 

so the exponent part was so low that only one 

out of every 5 x 10
8
 particles reacts with another 

after injecting 100 kJ of input energy.

Figure 5: Simulation using up to 1600 particles.  

 

 

 

 

 
Table 2: High Aeff reactor data.  

 

  

Rmax zmed r   n1 n2 E0  Lout(m) Lmax(m) I (A) Aeff

0.16 0.0425 0.0005 29 30 25728.5 0.61 2.75 3237 8.702E-03

0.16 0.0425 0.0005 30 30 24980.1 0.60 2.74 3129 8.905E-03

0.16 0.0425 0.0005 31 30 24302.4 0.59 2.74 3028 9.102E-03

0.16 0.0425 0.0005 32 30 23686.9 0.57 2.74 2934 9.309E-03

0.16 0.0425 0.0005 33 30 23126.2 0.57 2.74 2845 9.441E-03

0.16 0.0425 0.0005 34 30 22613.9 0.56 2.74 2761 9.594E-03

0.16 0.0425 0.0005 35 30 22144.6 0.55 2.74 2682 9.698E-03

0.16 0.0425 0.0005 36 30 21713.6 0.54 2.73 2608 9.841E-03

0.16 0.0425 0.0005 37 30 21316.9 0.53 2.73 2537 9.989E-03

0.16 0.04 0.0005 29 30 21328 0.55 2.92 2983 8.710E-03

0.16 0.04 0.0005 30 30 20734.1 0.54 2.92 2883 8.887E-03

0.16 0.04 0.0005 31 30 20196.4 0.53 2.92 2790 9.070E-03

0.16 0.04 0.0005 32 30 19708 0.53 2.91 2703 9.191E-03

0.16 0.04 0.0005 33 30 19263 0.52 2.91 2621 9.298E-03

0.16 0.04 0.0005 34 30 18856.5 0.97 92.23 2544 4.964E-03

0.16 0.04 0.0005 35 30 18484 0.91 82.28 2471 5.280E-03

0.16 0.04 0.0005 36 30 18142 0.99 98.03 2403 4.874E-03

0.16 0.04 0.0005 37 30 17827.1 0.72 44.83 2338 6.740E-03

0.16 0.0375 0.0005 29 30 17526 1.03 105.85 2737 4.203E-03

0.16 0.0375 0.0005 30 30 17060.4 0.94 89.92 2646 4.601E-03
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Only after 6000 simulations the cross section 

went lower than 3 x 10
-4

 as shown in the 

following Fig. 6: 

 
Figure 6: Aeff as a function of number of 

simulations before improvements. 

In order to achieve better results algorithms that 

are used in Artificial Intelligence as genetic 

algorithms were applied. They give major 

improvements as the “23 fellows system” that 

consists basically of a selection of the 23 best 

matches and makes variations over them. The 

algorithm does not use random input data but 

lowers Aeff from a run to the next linearly. The 

results improved Aeff from 2 x 10
-4

 to 10
-6

 m
2
, 

which was a 200-fold improvement but was still 

not good enough. The trajectories of the particles 

were simulated and it turns out that in some 

reactors they pass through very well confined 

areas as depicted in the following Fig. 7:  

  
Figure 7: Plot of particles trajectory inside a 

reactor chamber obtained from a simulation run. 

Thus, the cross section of the particles in 3 

dimensions was included into the simulations. 

This increases the computational time but giving 

very good results, even when using only 16 

particles. Afterwards 196 particles were used to 

obtain a highly accurate results improving from 

cross sections between 10
-7

 to 2 x 10
-3

 to cross 

sections between 4.32 x 10
-12

 to 10
-24

 m². With 

those simulations of 1660 reactors were 

performed. Out of these 1660 reactor 

configurations 1466 obtained a net energy gain of 

more than 4 times the input power. 784 reactor 

configurations obtained almost the maximum 

energy gain of 12.64. The reactor dimension was 

0.13 to 0.47 meters in diameter and the energy 

range for confinement from 75 J to 360 kJ. The 

output power depends on how many times per 

minutes the reactor is fired. In the following plot 

(Fig. 8) the improvement of the simulations with 

respect to the number of simulations using the 

real cross section and also using the “23 fellow” 

genetic algorithm is summarized: 

Figure 8: Aeff as a function of number of 

simulations after the improvements in 

simulations. 

These results can be used for other types of 

aneutronic fusion reactions but a very accurate 

design must be done. 

VI.a) Simulation results as a function of 

the toroidal coil number 

In the following Fig. 9 Aeff is depicted as a function 

of the number of toroidal coils: 
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Figure 9: Aeff (m²) as a function of toroidal coils 

number. It was tried from 3 to 19 coils/reactor 

but only between 5 and 11 coils reach ignition 

conditions 

 

VI.b) Reactor cross section as a function 

of chamber dimensions 

The following Fig. 10 shows Aeff as a function of 

the external radius of the reactor. The 

dimensions of the reactors selected by the 

genetic algorithm showed that the best reactor 

have specific dimensions. It is not necessary to 

build large reactors:  

 

Figure 10: Aeff as a function of the external 

chamber radius. In the vertical axis there is A
eff

 

(m
2
) and in the horizontal axis the radius (m). The 

algorithm was commanded to try between 35 

and 250mm radius tokamaks, finding the best of 

them at three discrete chamber radius. 

 

VI.c) Reactor cross section as a 

function of injected energy 

The performance of Aeff as a function of the 

optimal energy injected. As it can be seen from 

Fig. 11 some reactors need very low energy 

levels. It is not shown in Table 2, but the 

simulations prove that low energy reactors have a 

very low path length with very thin particle 

trajectory cross sections so a very accurate 

reactor design must be implemented. 

 
Figure. 11: Aeff as a function of the injected energy 

 

VI.d) Travelled particle distance as a 

function of injected energy 

In the following two Figs. 12 (linear scales) and 13 

(logarithmic scale) the simulation results for the 

average distance travelled by the particles as a 

function of the injected energy are plotted. As can 

be seen the low energy systems confine the 

particles for a shorter distance (and also shorter 

time): 

Figure 12: Average travelled distance in meters as 

a function of injected energy 

 
 

 
Figure 13: Average travelled distance in meters as 

a function of injected energy (logarithmic scale). 
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VI.e) Reactor magnetic field as a 

function of the reactor dimensions 

The magnetic field is inverse proportional to the 

chamber radius and not very high for this kind of 

plasmas and some of them could be achievable 

without superconductors: 

Figure 14: Confinement magnetic field as a 

function of reactor external dimension. 

 

VI.f) Reactor energy as a function of the 

reactor dimensions 

Obviously, the injected energy must be 

proportional to the reactor dimensions, but it can 

be seen that a large range of energies are 

allowed for every reactor size as shown in Fig. 14: 

 

 
Figure 15: Injected energy as a function of reactor 

external dimension. 
 

VII. Conclusion 

We were able to show in this paper with 

extensive computer simulations that our 

Pulsotron tokamak design for aneutronic proton-

boron fusion can reach energetic break-even. 

Furthermore, our numerical simulations reveal 

that it is also possible to construct small scale 

fusion devices by using hot protons with kinetic 

energies around 500 keV and comparably small 

electron temperatures. 
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IX. Annex: Code samples 

The following represents the C++ code sample of 

the main functions used to calculate the magnetic 

field in the simulations. The code uses the 

formula obtained using the Law of Biot Savart, 

integrated over a circular current loop to obtain 

the magnetic field at any point in space. Its result 

was compared using the on axis formula result 

(as shown in Fig. 16). 

 𝐵𝑥 = 𝐵0
1

𝜋√𝑄
[𝐸(𝑘)

1−𝛼2−𝛽2

𝑄−4𝛼
+ 𝐾(𝑘)] (2) 

 𝐵𝑟 = 𝐵0
𝛾

𝜋√𝑄
[𝐸(𝑘)

1+𝛼2+𝛽2

𝑄−4𝛼
− 𝐾(𝑘)] (3) 

 Α=r/a      β=x/a    γ=z/r (4) 

 𝑄 = [(1 − 𝛼)2 +  𝛽2] (5) 

 𝑘 = √
4𝛼

𝑄
 (6) 

Where B0 is the magnetic field at the coil centre: 

B0=μoI/(2a) 

K(k) is the complete elliptic integral function, of 

the first kind 

E(k) is the complete elliptic integral function, of 

the second kind.  

 

Figure 16: Schematics of the integration domain 

used in the simulations. 

struct s_coil { vector<double> xyz, dxyz; 
double R, r, current,num; double R2; }; 

//410. Calculates the field due to "coils" at 
"point" due a currrent passing through them 
void s_ccoil::halla_B_coils(vector <s_coil> 
coils, vector <double> point, double I, vector 
<double> &B) 
{ 
 B = { 0,0,0 }; 
 vector <double> B1; 
 for (auto const& icoil : coils) 
 { 
  halla_B_coil(icoil.xyz, 
icoil.dxyz, icoil.R, point, B1); 
  sumproductvector(B, B1, 
icoil.num*I*icoil.current); 
 } 
} 
//411. Caution: coil_dir module=1 
//calculates the magnetic field B due a coil in 
3D at point "point" 
//Uses halla_hr() tocalculate h,r,vh,vr that 
will be used by halla_BxBz(). (checked) 
//Uses halla_BxBz() to calculate field radially 
and axially and pass it to 3D 
//B field must be multiplied by turns number 
and current (with its sign) 
void s_ccoil::halla_B_coil(vector <double> 
coil_ori, vector <double> coil_dir, double 
coil_R, vector <double> point, vector <double> 
&B) 
{ 
 double h, r, Br, Bh; vector <double> 
vr, vh; 
 halla_hr(coil_ori, coil_dir, point, h, 
r, vr, vh); 
 halla_BxBz(coil_R, r, h, Br, Bh); if (r 
< 1e-7) Br = 0; 
 B = { Br*vr[0] + Bh * vh[0],Br*vr[1] + 
Bh * vh[1], Br*vr[2] + Bh * vh[2] }; 
} 
//412. Calculates B field due a coil in two 
directions: axially and radial 
//R=loop radius, r=distance point-loop axis, 
z=perpendicular distance of point to loop 
surface 
//Must be multiplied by current and relative 
permeability and squared of number of wires 
void s_ccoil::halla_BxBz(double R, double r, 
double z, double &Br, double &Bz) 
{ 
 double kr = 1.0;  if (r < 0.0) { 
kr = -1.0; r = -r; } 
 double al = r / R, be = z / R, ga = z / 
r; 
 double q = (1. + al)*(1. + al) + be * 
be; 
 double k = sqrt(4.*al / q); 
 double Bz0 = 2.e-7 / (R*sqrt(q)+1e-
300); 
#ifdef __BOOST 
 using namespace boost::math; 
 double Kk = ellint_1(k);  
 double Ek1 = ellint_2(k) / (q - 
4.*al+1e-300); 
#else 
 double Kk, Ek1; 
 Complete_Elliptic_Integrals(k, &Kk, 
&Ek1); 
 Ek1=Ek1/ (q - 4.*al+1e-300); 
#endif 
 
 Bz = Bz0 * (Ek1*(1. - al * al - be * 
be) + Kk); 
 if (r > 1e-20) 
  Br = kr * Bz0*ga*(Ek1*(1. + al 
* al + be * be) - Kk); 
 else 
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  Br = 0.0; 
} 
//413. Auxiliary function of hallaBxBz() 
//Calculates height h and distance r from axis 
of a point over a coil 
//There is a vector beginning in a. Then it is 
calculated point d in such line that is nearer 
to it and pass through c 
//Module of vector b must be = 1 
void halla_hr(vector <double> a, vector 
<double> b, vector <double> c, double &h, 
double &r, vector <double> &vr, vector <double> 
&vh) 
{ 
 restavector(c, a);//calculates 
difference between point a and coil center, so 
now it is referenced from coordinate (0,0,0) 
 h = (b[0] * c[0] + b[1] * c[1] + b[2] * 
c[2]); vh = b; //vector vh is parallel to dir 
and its module is 1 because b module is 1 
 vr = { c[0] - h * b[0], c[1] - h * b[1] 
, c[2] - h * b[2] }; 
 r = modulo(vr); 
 if (r < 1e-7) vr = { 1,0,0 }; else 
dividemodulo(vr); 

} 
void Complete_Elliptic_Integrals(double x, 
double* Fk, double* Ek) 
{ 
 const double PI_2 = 
1.5707963267948966192313216916397514; // pi/2 
 const double PI_4 = 
0.7853981633974483096156608458198757; // pi/4 
 double k;      // modulus 
 double m;      // the parameter of the 
elliptic function m = modulus^2 
 double a;      // arithmetic mean 
 double g;      // geometric mean 
 double a_old;  // previous arithmetic 
mean 
 double g_old;  // previous geometric 
mean 
 double two_n;  // power of 2 
 double sum; 
 
 if (x == 0.0) { *Fk = M_PI_2;      *Ek 
= M_PI_2;       return; } 
 k = fabs(x); 
 m = k * k; 
 if (m == 1.0) { *Fk = DBL_MAX;      *Ek 
= 1.0;       return; } 
 
 a = 1.0; 
 g = sqrt(1.0 - m); 
 two_n = 1.0; 
 sum = 2.0 - m; 
 for (int i = 0; i < 27; i++) 
 { 
  g_old = g; 
  a_old = a; 
  a = 0.5 * (g_old + a_old); 
  g = g_old * a_old; 
  two_n += two_n; 
  sum -= two_n * (a * a - g); 
  if (fabs(a_old - g_old) <= 
(a_old * DBL_EPSILON)) break; 
  g = sqrt(g); 
 } 
 *Fk = (double)(PI_2 / a); 
 *Ek = (double)((PI_4 / a) * sum); 
 return; 

} 

 void restavector(vector <double> &a, 
vector <double> b) { a[0] -= b[0]; a[1] -= 
b[1]; a[2] -= b[2]; } 
  double restamodulo(vector 
<double> a, vector <double> b) { return 
(modulo({ a[0] - b[0],a[1] - b[1], a[2] - b[2] 
})); } 
 //suma al vector a el vector b: 

 void sumproductvector(vector <double> 
&a, vector <double> b, double k) { a[0] += k * 
b[0]; a[1] += k * b[1]; a[2] += k * b[2]; } 

 
 double modulo(vector <double> xyz) { 
return sqrt(xyz[0] * xyz[0] + xyz[1] * xyz[1] + 
xyz[2] * xyz[2]+1e-30); } 
 void dividemodulo(vector <double> &xyz) 
{ double m = 1.0 / modulo(xyz); xyz[0] *= m; 
xyz[1] *= m; xyz[2] *= m; } 
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