

 Journal of Technological and Space Plasmas, Vol. 1, Issue 1 (2019)

Vol. 1, Issue 1 - 12 © G-Labs 2019

Simulation of a high proton temperature plasma toroidal magnetic trap to

be used in proton-11B fusion

J. L. Lopez Segura1, N. Urgoiti Moinot1, E. Lazzaro2

1Advanced Ignition SL C/francisco Medina Y Mendoza, Parcela 1, Poligono 19171 - (Cabanillas Del Campo) -

Guadalajara, Spain
2

Istituto Fisica del Plasma CNR, Via R. Cozzi 53, 20125 Milano, Italy

(Received: 02. June 2019, Accepted: 19. Nov. 2019, Published online: 20. Nov. 2019)

Several tokamaks-like toroidal magnetic confinement structures have been simulated using

500keV protons to be used in P-B11 fusion. In order to find the optimal confinement

configuration, the simulation was carried out by an evolutionary algorithm running 145,000

simulations whose results are presented in this document including the feasibility to reach

ignition with some of them by accelerating and colliding
11

B and proton ions.

© G-Labs 2019

(DOI: 10.31281/jtsp.v1i1.6)

jlopez@advancedignition.eu

I. Introduction

After extensive testing of the Pulsotron-2A z-

pinch device and several ion accelerators using

the Pulsotron-2B device it was found that it is

necessary to design fusion devices that reduce

the electron temperature to decrease loses [14]

[15] [16]. The Pulsotron II 2A device consists of a

small Z-pinch device and the Pulsotron II 2B

represents a modification of a capacitor bank to

be used in several tests related to plasma

confinement. The Z-pinch successfully achieved

the required pressure but with a low plasma

temperature. In order to design a boron-proton

fusion reactor it was designed an electrostatic

and a magnetic ion accelerator but the design of

a confinement chamber is still needed. In the

present work the results reached after simulating

145,000 different magnetic toroidal Tokamak-like

design are presented. The chamber is designed

to sustain boron-proton fusion. The Boron fuel

state will be Ions with one or more positive

charges B.

The Larmor radius of the protons is taken to be

the major radius R instead of the minor one that

would require much larger magnetic fields. Boron

can be injected at low speed but must be

confined within the higher concentration of

protons. In this first simulation campaign, only

protons are used in order to determine which

reactor configuration is the best candidate. The

losses are calculated from the ion acceleration

and a Larmor radius equal to chamber major

radius for a confinement time of 0.59 ms for a

small 200 mm reactor, so losses are about 5.47 x

10
-24

 watts according to the excel table found in

[17], formula 41, so less than one eV is lost by the

protons during their confinement. Defining the

Larmor radius as the major radius of the

chamber the reactor chamber dimensions can be

greatly reduced as, for example, a 500 keV proton

whose mass is 1.66 x 10
-27

kg has an approximate

speed of 9.8222 x 10
6
 m/s, so when submitted to

a 1.5 Tesla magnetic field (easily achievable in a

small reactor), the Larmor radius decreases to:

𝑅 =
𝑚𝑣

𝑞𝐵
= 6.787𝑥10−3𝑚. Hence, a proton plasma

can theoretically be confined in a small 135 mm

diameter torus. In the simulation the particles

leaving the torus are taken into account as losses.

In real toroidal systems, coils would be installed

to recover electricity from lost ions and to slow

them down to non-harmful kinetic energy levels.

The main coils would receive some proton flux,

but this was not calculated in this round of

simulations. In the simulation copper wires are

used instead of superconductive coils that would

suffer less from ion bombardment.

The chamber is designed for high temperature

aneutronic fusion. To deal with the extremely

 Journal of Technological and Space Plasmas, Vol. 1, Issue 1 (2019)

Vol. 1, Issue 1 - 13 © G-Labs 2019

high ion speed a new configuration design is

used. Additionally, a new parameter Aeff gives the

effective cross section of the reactor that can be

used to obtain the percentage of reacting

particles inside the reactor in a direct way. C++

source code used in the simulation is also

provided which equations are described in more

detail in [2, 3, 5]. The main objective was to find

the feasibility of using a tokamak-like

configuration to allow the fusion reactions inside.

The configuration must allow the installation of

direct electricity recovery coils to be used to

extract currents from the generated alpha

particles.

Particles energy was assumed to be 500+12 keV

which is close to the maximum cross section [5]

with angle distribution of + 20º obtained from

elastic scattering [9-11, 6].

II. Equations and algorithms used

The percentage of the particles that react can be

obtained using the following formula:

 𝑅 = 𝑁 ∗ (1 − 𝑒
−𝑁∗𝑡∗

𝜎

𝐴𝑒𝑓𝑓) (1)

Where:

N is the number of particles (protons or borons)

σ=cross section of the P-
11

B reaction,

Aeff=Effective cross section of the reaction, t =

average laps number of particles paths. All areas

are taken in square meters.

The maximum cross section for proton-
11

B fusion

is 0.8 x 10
-28

 m
2

(0.8 barns) accordingly EXFOR

database [4]:

Figure1: Cross section of the Boron11-Proton

fusion.

The exponential part of the reactor equation (1)

must be about 1 in order to allow the reactions

between most of the particles, so Eq. (1) can be

used to calculate how many particles must be

injected into the chamber. In order to have highly

accurate and speedy simulations the C++

multithread technology was used to run high

speed algorithms that apply elliptic integrals. As

reference equations and codes collected from the

book by J. D. Jackson [3] were used. The mutual

inductance and inductance calculations uses

Maxwell’s Method [2] and the equations can be

can be found at [13]. The obtained results of

inductance and magnetic field were checked

against the general equations of magnetic fields

for standard devices, such as loops and wires.

Furthermore, test devices were built and tested

using standard magnetic field sensors,

oscilloscopes and current sensors. With only one

hundred simulations the achieved Aeff was too

low, so an increase in the number of simulations

to more than 10 thousands of tokamak-like

configurations. To do that an initially low particle

number of 16 was simulated and subsequently

increased to 196 particles in those toroidal

configurations that achieved longer confinement

time and lower Aeff. Also the genetic algorithm

was used to generate vectors of data input in the

more promising reactors.

II.a) Validity of Eq. (1)

The validity of Eq. (1) exponential part can be

easily demonstrated using a small excel table

using as example Nσ/A=0.02 where the

remainder particles reacts each other every turn.

As can be seen the exponential equation

simplifies results:

Table. 1: Comparison of exponential part of Eq. (1)

to obtain the remainder of particles.

N*σ/A 0.02

Turns

remainder

particles

Reacted

particles exp(-Nσ/A)

0 1 0.02 1

1 0.98 0.0196 0.9802

2 0.9604 0.019208 0.9608

3 0.9412 0.018824 0.9418

4 0.9224 0.018447 0.9231

5 0.9039 0.018078 0.9048

6 0.8858 0.017717 0.8869

7 0.8681 0.017363 0.8694

8 0.8508 0.017015 0.8521

9 0.8337 0.016675 0.8353

10 0.8171 0.016341 0.8187

11 0.8007 0.016015 0.8025

12 0.7847 0.015694 0.7866

 Journal of Technological and Space Plasmas, Vol. 1, Issue 1 (2019)

Vol. 1, Issue 1 - 14 © G-Labs 2019

III. Assumptions

The particles are injected when the magnetic field

is saturated so there are only slow magnetic field

variations. According to the simulations the

maximum B-field is reached between 5

milliseconds and some seconds to values that

ranges from 0.43 teslas for larger coils to 1.6

teslas for smaller ones.

The particles energy is 500+12keV according to

the Miranda particles injector specifications. The

particles angle distribution is +20º, according to

our simulations taking into account kinetics

scattering data obtained from [6, 10, 11]. The

magnetic field was simulated in different

configurations by using Biot-Savart’s law

integrating along every coil. In order to calculate

the inductance with high accuracy during short

time elliptic integrals were applied along with the

multithread technology. Using fixed time and

length steps generates large errors in the coils

proximity so the spatial increment in the

proximity to the coils has to be narrowed down

from one millimetre to less than 1 micrometre.

IV. Simulation Setup

In order to have high accurate simulations and

speed the C++ multithread technology was used

to run the algorithm, which works on the basis of

elliptic integrals.

Figure 2: Plot of particles running inside a 280mm

diameter Tokamak of 6 toroidal coil

A large amount of different configurations were

simulated using only 16 particles at the beginning

but the best results were obtained with 196

simulation particles.

IV.a) Input data

The main input data are the dimensions of coils,

number of turns t, energy injected and proton

energy (550 keV). Simulations were performed

with 2 to 20 toroidal coils and up to 4 parallel

coils (but more coils can be set).

Figure 3: Plot of particles running inside a 280mm

diameter Tokamak of 4 toroidal coil.

V. Performance of the simulator

Using low particle simulations allows a reduction

in simulation time from some minutes per

reactor to 10 tokamak configurations per second.

If a particle passes close to a coil, the magnetic

field gradient is higher so more calculation points

are taken and the calculus is slower. One

software thread per particle was used, so when a

particle escapes to the reactor wall its thread is

terminated. Hence, a better confinement in the

reactor increases the escape time for particles

and the simulation runs slower. The time

consumption for one simulation is directly

proportional to the particle number and the

confinement time of the particles. It turns out

that with only 9, 16 or 25 particles one can have

similar results as with 196 or more particles.

Hence, such preliminary results can be used for

comparison purposes to filter out the best

reactors before using a larger number of particles

as can be seen in following graphs:

Figure 4: Simulation using up to 200 particles.

 Journal of Technological and Space Plasmas, Vol. 1, Issue 1 (2019)

Vol. 1, Issue 1 - 15 © G-Labs 2019

By using more particles the simulation result

stabilizes:

Where Lmed is the average particle path length of

a proton before it escapes to the container walls.

The best reactors have particles travelling up to

800 meters (see Fig 8).

VI. Simulation results

Initial results demonstrate that the Aeff was so

high that very few particles could react within the

confinement region. As can be seen from the

following data in Table 2, Aeff was larger than 2 x

10
-3

 m² for tokamaks of 0.32 meters major radius,

so the exponent part was so low that only one

out of every 5 x 10
8
 particles reacts with another

after injecting 100 kJ of input energy.

Figure 5: Simulation using up to 1600 particles.

Table 2: High Aeff reactor data.

Rmax zmed r n1 n2 E0 Lout(m) Lmax(m) I (A) Aeff

0.16 0.0425 0.0005 29 30 25728.5 0.61 2.75 3237 8.702E-03

0.16 0.0425 0.0005 30 30 24980.1 0.60 2.74 3129 8.905E-03

0.16 0.0425 0.0005 31 30 24302.4 0.59 2.74 3028 9.102E-03

0.16 0.0425 0.0005 32 30 23686.9 0.57 2.74 2934 9.309E-03

0.16 0.0425 0.0005 33 30 23126.2 0.57 2.74 2845 9.441E-03

0.16 0.0425 0.0005 34 30 22613.9 0.56 2.74 2761 9.594E-03

0.16 0.0425 0.0005 35 30 22144.6 0.55 2.74 2682 9.698E-03

0.16 0.0425 0.0005 36 30 21713.6 0.54 2.73 2608 9.841E-03

0.16 0.0425 0.0005 37 30 21316.9 0.53 2.73 2537 9.989E-03

0.16 0.04 0.0005 29 30 21328 0.55 2.92 2983 8.710E-03

0.16 0.04 0.0005 30 30 20734.1 0.54 2.92 2883 8.887E-03

0.16 0.04 0.0005 31 30 20196.4 0.53 2.92 2790 9.070E-03

0.16 0.04 0.0005 32 30 19708 0.53 2.91 2703 9.191E-03

0.16 0.04 0.0005 33 30 19263 0.52 2.91 2621 9.298E-03

0.16 0.04 0.0005 34 30 18856.5 0.97 92.23 2544 4.964E-03

0.16 0.04 0.0005 35 30 18484 0.91 82.28 2471 5.280E-03

0.16 0.04 0.0005 36 30 18142 0.99 98.03 2403 4.874E-03

0.16 0.04 0.0005 37 30 17827.1 0.72 44.83 2338 6.740E-03

0.16 0.0375 0.0005 29 30 17526 1.03 105.85 2737 4.203E-03

0.16 0.0375 0.0005 30 30 17060.4 0.94 89.92 2646 4.601E-03

J. L. Lopez Segura et al. J. Technol. Space Plasmas, Vol. 1, Issue 1 (2019)

Vol. 1, Issue 1 - 16 © G-Labs 2019

Only after 6000 simulations the cross section

went lower than 3 x 10
-4

 as shown in the

following Fig. 6:

Figure 6: Aeff as a function of number of

simulations before improvements.

In order to achieve better results algorithms that

are used in Artificial Intelligence as genetic

algorithms were applied. They give major

improvements as the “23 fellows system” that

consists basically of a selection of the 23 best

matches and makes variations over them. The

algorithm does not use random input data but

lowers Aeff from a run to the next linearly. The

results improved Aeff from 2 x 10
-4

 to 10
-6

 m
2
,

which was a 200-fold improvement but was still

not good enough. The trajectories of the particles

were simulated and it turns out that in some

reactors they pass through very well confined

areas as depicted in the following Fig. 7:

Figure 7: Plot of particles trajectory inside a

reactor chamber obtained from a simulation run.

Thus, the cross section of the particles in 3

dimensions was included into the simulations.

This increases the computational time but giving

very good results, even when using only 16

particles. Afterwards 196 particles were used to

obtain a highly accurate results improving from

cross sections between 10
-7

 to 2 x 10
-3

 to cross

sections between 4.32 x 10
-12

 to 10
-24

 m². With

those simulations of 1660 reactors were

performed. Out of these 1660 reactor

configurations 1466 obtained a net energy gain of

more than 4 times the input power. 784 reactor

configurations obtained almost the maximum

energy gain of 12.64. The reactor dimension was

0.13 to 0.47 meters in diameter and the energy

range for confinement from 75 J to 360 kJ. The

output power depends on how many times per

minutes the reactor is fired. In the following plot

(Fig. 8) the improvement of the simulations with

respect to the number of simulations using the

real cross section and also using the “23 fellow”

genetic algorithm is summarized:

Figure 8: Aeff as a function of number of

simulations after the improvements in

simulations.

These results can be used for other types of

aneutronic fusion reactions but a very accurate

design must be done.

VI.a) Simulation results as a function of

the toroidal coil number

In the following Fig. 9 Aeff is depicted as a function

of the number of toroidal coils:

J. L. Lopez Segura et al. J. Technol. Space Plasmas, Vol. 1, Issue 1 (2019)

Vol. 1, Issue 1 - 17 © G-Labs 2019

Figure 9: Aeff (m²) as a function of toroidal coils

number. It was tried from 3 to 19 coils/reactor

but only between 5 and 11 coils reach ignition

conditions

VI.b) Reactor cross section as a function

of chamber dimensions

The following Fig. 10 shows Aeff as a function of

the external radius of the reactor. The

dimensions of the reactors selected by the

genetic algorithm showed that the best reactor

have specific dimensions. It is not necessary to

build large reactors:

Figure 10: Aeff as a function of the external

chamber radius. In the vertical axis there is A
eff

(m
2
) and in the horizontal axis the radius (m). The

algorithm was commanded to try between 35

and 250mm radius tokamaks, finding the best of

them at three discrete chamber radius.

VI.c) Reactor cross section as a

function of injected energy

The performance of Aeff as a function of the

optimal energy injected. As it can be seen from

Fig. 11 some reactors need very low energy

levels. It is not shown in Table 2, but the

simulations prove that low energy reactors have a

very low path length with very thin particle

trajectory cross sections so a very accurate

reactor design must be implemented.

Figure. 11: Aeff as a function of the injected energy

VI.d) Travelled particle distance as a

function of injected energy

In the following two Figs. 12 (linear scales) and 13

(logarithmic scale) the simulation results for the

average distance travelled by the particles as a

function of the injected energy are plotted. As can

be seen the low energy systems confine the

particles for a shorter distance (and also shorter

time):

Figure 12: Average travelled distance in meters as

a function of injected energy

Figure 13: Average travelled distance in meters as

a function of injected energy (logarithmic scale).

J. L. Lopez Segura et al. J. Technol. Space Plasmas, Vol. 1, Issue 1 (2019)

Vol. 1, Issue 1 - 18 © G-Labs 2019

VI.e) Reactor magnetic field as a

function of the reactor dimensions

The magnetic field is inverse proportional to the

chamber radius and not very high for this kind of

plasmas and some of them could be achievable

without superconductors:

Figure 14: Confinement magnetic field as a

function of reactor external dimension.

VI.f) Reactor energy as a function of the

reactor dimensions

Obviously, the injected energy must be

proportional to the reactor dimensions, but it can

be seen that a large range of energies are

allowed for every reactor size as shown in Fig. 14:

Figure 15: Injected energy as a function of reactor

external dimension.

VII. Conclusion

We were able to show in this paper with

extensive computer simulations that our

Pulsotron tokamak design for aneutronic proton-

boron fusion can reach energetic break-even.

Furthermore, our numerical simulations reveal

that it is also possible to construct small scale

fusion devices by using hot protons with kinetic

energies around 500 keV and comparably small

electron temperatures.

VIII. References

[1] J. Marshall. "Acceleration of plasma into

vacuum." J. Nucl. Energy (1954) 7.3-4 (1958): 276-

276.

[2] A. C. M. de Queiroz Mutual Inductance and

Inductance Calculations by Maxwell’s Method,

Homepage of C. M. de Queiroz,

https://deanostoybox.com/hot-

streamer/TeslaCoils/OtherPapers/Antonio/maxw

ell.pdf (2003), Version of July 2019.

[3] J. D. Jackson, "Classical electrodynamics."

American Institute of Physics 15.11 (2009): 62-65.

Chapter 5.5. Magnetic Induction of a magnetic

loop of current

[4] J. M. Davidson et al. “Low Energy Cross

Sections for
11

B (p,3α).”Nucl. Phys. (1979), Section

A; Vol.315, p.253. DOI: 10.1016/0375-

9474(79)90647-X

[5] J.L. Lopez Segura “Coil off axis magnetic field

using elliptic integrals and Maxwell method with

C++ code”, Technical Report (2014)

[6] A. Gallmann et al. “B11(d,p)B12 Angular

Distributions at Ed=5.5 MeV for the B12 2.62- and

2.72 MeV Levels” Phys. Rev. 138(3):560-568

(1965). DOI: 10.1103/PhysRev.138.B560

[7] S. Eliezer et al., “Avalanche proton-boron

fusion based on elastic nuclear collisions.” Phys.

Plasmas 23, 050704 (2016). DOI:

10.1063/1.4950824

[8] X. Guo “Kinetic advantage of controlled

intermediate nuclear fusion”, AIP Conference

Proceedings 1479, 2407 (2012). DOI:

10.1063/1.4756680

[9] P. M. Endt et al., “Angular distributions of four

proton groups from the B10(d, p)B11 reaction”

Physica Vol. 18, 6–7, 423-428. (1952)

DOI: 10.1016/S0031-8914(52)80075-8

[10] M. C. Spraker et al., “The 11B(p,α)8Be → α + α

and the
11

B(α,α)
11

B Reactions at Energies Below

5.4 MeV”, J. Fusion Energy, Vol. 31, Issue 4, (2012),

pp 357–367. DOI: 10.1007/s10894-011-9473-5

[11] G. W. Tautfest and S. Rubin, "Elastic

Scattering of Protons from B
11

 and N
14

" Phys. Rev.

103(1):196-199, (1956). DOI:

10.1103/PhysRev.103.196

[12] A. G. Ruggiero Nuclear Fusion of Protons with

Boron. Prospects for Heavy Ion Inertial Fusion

(1992).

https://doi.org/10.1016/0375-9474(79)90647-X
https://doi.org/10.1016/0375-9474(79)90647-X
https://doi.org/10.1103/PhysRev.138.B560
https://doi.org/10.1063/1.4950824
https://doi.org/10.1063/1.4756680
https://doi.org/10.1016/S0031-8914(52)80075-8
https://doi.org/10.1007/s10894-011-9473-5
https://doi.org/10.1103/PhysRev.103.196

J. L. Lopez Segura et al. J. Technol. Space Plasmas, Vol. 1, Issue 1 (2019)

Vol. 1, Issue 1 - 19 © G-Labs 2019

[13] E. B. Rosa, “The Self and Mutual Inductances

of Linear Conductors,” Bulletin of Bureau of

Standards, Vol.4.No.2 (1908)

[14] 2014-April Pulsotron-2 test report, J. Lopez

[15] Pulsotron-2 ignition conditions verification. J.

Lopez (2013)

[16] January 2014 Pulsotron-2 test report. J. Lopez

[17] Useful formula and excel tables for plasma

physics V08, J. Lopez (2018)

IX. Annex: Code samples

The following represents the C++ code sample of

the main functions used to calculate the magnetic

field in the simulations. The code uses the

formula obtained using the Law of Biot Savart,

integrated over a circular current loop to obtain

the magnetic field at any point in space. Its result

was compared using the on axis formula result

(as shown in Fig. 16).

 𝐵𝑥 = 𝐵0
1

𝜋√𝑄
[𝐸(𝑘)

1−𝛼2−𝛽2

𝑄−4𝛼
+ 𝐾(𝑘)] (2)

 𝐵𝑟 = 𝐵0
𝛾

𝜋√𝑄
[𝐸(𝑘)

1+𝛼2+𝛽2

𝑄−4𝛼
− 𝐾(𝑘)] (3)

 Α=r/a β=x/a γ=z/r (4)

 𝑄 = [(1 − 𝛼)2 + 𝛽2] (5)

 𝑘 = √
4𝛼

𝑄
 (6)

Where B0 is the magnetic field at the coil centre:

B0=μoI/(2a)

K(k) is the complete elliptic integral function, of

the first kind

E(k) is the complete elliptic integral function, of

the second kind.

Figure 16: Schematics of the integration domain

used in the simulations.

struct s_coil { vector<double> xyz, dxyz;
double R, r, current,num; double R2; };

//410. Calculates the field due to "coils" at
"point" due a currrent passing through them
void s_ccoil::halla_B_coils(vector <s_coil>
coils, vector <double> point, double I, vector
<double> &B)
{
 B = { 0,0,0 };
 vector <double> B1;
 for (auto const& icoil : coils)
 {
 halla_B_coil(icoil.xyz,
icoil.dxyz, icoil.R, point, B1);
 sumproductvector(B, B1,
icoil.num*I*icoil.current);
 }
}
//411. Caution: coil_dir module=1
//calculates the magnetic field B due a coil in
3D at point "point"
//Uses halla_hr() tocalculate h,r,vh,vr that
will be used by halla_BxBz(). (checked)
//Uses halla_BxBz() to calculate field radially
and axially and pass it to 3D
//B field must be multiplied by turns number
and current (with its sign)
void s_ccoil::halla_B_coil(vector <double>
coil_ori, vector <double> coil_dir, double
coil_R, vector <double> point, vector <double>
&B)
{
 double h, r, Br, Bh; vector <double>
vr, vh;
 halla_hr(coil_ori, coil_dir, point, h,
r, vr, vh);
 halla_BxBz(coil_R, r, h, Br, Bh); if (r
< 1e-7) Br = 0;
 B = { Br*vr[0] + Bh * vh[0],Br*vr[1] +
Bh * vh[1], Br*vr[2] + Bh * vh[2] };
}
//412. Calculates B field due a coil in two
directions: axially and radial
//R=loop radius, r=distance point-loop axis,
z=perpendicular distance of point to loop
surface
//Must be multiplied by current and relative
permeability and squared of number of wires
void s_ccoil::halla_BxBz(double R, double r,
double z, double &Br, double &Bz)
{
 double kr = 1.0; if (r < 0.0) {
kr = -1.0; r = -r; }
 double al = r / R, be = z / R, ga = z /
r;
 double q = (1. + al)*(1. + al) + be *
be;
 double k = sqrt(4.*al / q);
 double Bz0 = 2.e-7 / (R*sqrt(q)+1e-
300);
#ifdef __BOOST
 using namespace boost::math;
 double Kk = ellint_1(k);
 double Ek1 = ellint_2(k) / (q -
4.*al+1e-300);
#else
 double Kk, Ek1;
 Complete_Elliptic_Integrals(k, &Kk,
&Ek1);
 Ek1=Ek1/ (q - 4.*al+1e-300);
#endif

 Bz = Bz0 * (Ek1*(1. - al * al - be *
be) + Kk);
 if (r > 1e-20)
 Br = kr * Bz0*ga*(Ek1*(1. + al
* al + be * be) - Kk);
 else

J. L. Lopez Segura et al. J. Technol. Space Plasmas, Vol. 1, Issue 1 (2019)

Vol. 1, Issue 1 - 20 © G-Labs 2019

 Br = 0.0;
}
//413. Auxiliary function of hallaBxBz()
//Calculates height h and distance r from axis
of a point over a coil
//There is a vector beginning in a. Then it is
calculated point d in such line that is nearer
to it and pass through c
//Module of vector b must be = 1
void halla_hr(vector <double> a, vector
<double> b, vector <double> c, double &h,
double &r, vector <double> &vr, vector <double>
&vh)
{
 restavector(c, a);//calculates
difference between point a and coil center, so
now it is referenced from coordinate (0,0,0)
 h = (b[0] * c[0] + b[1] * c[1] + b[2] *
c[2]); vh = b; //vector vh is parallel to dir
and its module is 1 because b module is 1
 vr = { c[0] - h * b[0], c[1] - h * b[1]
, c[2] - h * b[2] };
 r = modulo(vr);
 if (r < 1e-7) vr = { 1,0,0 }; else
dividemodulo(vr);

}
void Complete_Elliptic_Integrals(double x,
double* Fk, double* Ek)
{
 const double PI_2 =
1.5707963267948966192313216916397514; // pi/2
 const double PI_4 =
0.7853981633974483096156608458198757; // pi/4
 double k; // modulus
 double m; // the parameter of the
elliptic function m = modulus^2
 double a; // arithmetic mean
 double g; // geometric mean
 double a_old; // previous arithmetic
mean
 double g_old; // previous geometric
mean
 double two_n; // power of 2
 double sum;

 if (x == 0.0) { *Fk = M_PI_2; *Ek
= M_PI_2; return; }
 k = fabs(x);
 m = k * k;
 if (m == 1.0) { *Fk = DBL_MAX; *Ek
= 1.0; return; }

 a = 1.0;
 g = sqrt(1.0 - m);
 two_n = 1.0;
 sum = 2.0 - m;
 for (int i = 0; i < 27; i++)
 {
 g_old = g;
 a_old = a;
 a = 0.5 * (g_old + a_old);
 g = g_old * a_old;
 two_n += two_n;
 sum -= two_n * (a * a - g);
 if (fabs(a_old - g_old) <=
(a_old * DBL_EPSILON)) break;
 g = sqrt(g);
 }
 *Fk = (double)(PI_2 / a);
 *Ek = (double)((PI_4 / a) * sum);
 return;

}

 void restavector(vector <double> &a,
vector <double> b) { a[0] -= b[0]; a[1] -=
b[1]; a[2] -= b[2]; }
 double restamodulo(vector
<double> a, vector <double> b) { return
(modulo({ a[0] - b[0],a[1] - b[1], a[2] - b[2]
})); }
 //suma al vector a el vector b:

 void sumproductvector(vector <double>
&a, vector <double> b, double k) { a[0] += k *
b[0]; a[1] += k * b[1]; a[2] += k * b[2]; }

 double modulo(vector <double> xyz) {
return sqrt(xyz[0] * xyz[0] + xyz[1] * xyz[1] +
xyz[2] * xyz[2]+1e-30); }
 void dividemodulo(vector <double> &xyz)
{ double m = 1.0 / modulo(xyz); xyz[0] *= m;
xyz[1] *= m; xyz[2] *= m; }

Open Access. This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes

were made. The images or other third party material in this article are

included in the article s Creative Commons license, unless indicated

otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted

by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder. To view a copy of

this license, visit: http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

