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Unlike most publications devoted to the application of the self-consistent method of the nonlinear Vlasov-Poisson system to the study of beam-beam interaction, in this article an alternative strategy using the elegantapproach of the Frobenius-Perron operator for symplectic twist maps has been developed. A detailed analysisof the establishment of an equilibrium density distribution in phase space, as well as the behavior of theperturbed distribution function with respect to the coherent stability of the two beams, has been carried out.Using the Renormalization Group technique for the reduction of the Frobenius-Perron operator, the casewhere the unperturbed rotation frequency (unperturbed betatron tune) of the map is far from any structuralresonance driven by the beam-beam kick perturbation has been analyzed in detail. It has been shown that upto second order in the beam-beam parameter, the renormalized map propagator with nonlinear stabilizationdescribes a random walk of the angle variable, implying that there exists an equilibrium distribution functiondepending only on the action variable.The linearized Frobenius-Perron operators for each beam imply a discrete form of the linearized Vlasov equa-tions, which essentially comprises a newmethod for calculating coherent beam-beam instabilities using a ma-trix mapping technique. In the special case of an isolated coherent beam-beam resonance, a stability criterionfor coherent beam-beam resonances has been found in closed form.An intriguing particular concerning the effect of repeated beam-beamcollisions on collider luminosity has beenderived explicitly. An addition of luminosity per kick (small though, of the order of the beam-beam parameter)in the course of successive beam-beam collisions could be achieved.
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I. Introduction

Charged particle beams in accelerators and storagerings are subjected to external forces that are oftenrapidly oscillating, such as conventional quadrupolefocusing forces, radio-frequency accelerating fields,etc. In addition, collective self-consistent excita-tion fields can also be rapidly oscillating. A typi-cal example is a ring collider device for the storageof subsequently colliding beams, where the evo-lution of each of the two beams is strongly influ-enced by the electromagnetic forces generated bythe counter-propagating beam. The kick experi-enced by each beam is strictly localized only in asmall region around the interaction point and is pe-riodic with a period of one revolution along the ma-chine circumference.
The non-trivial problems and issues associated withthe now-common term beam-beam interaction arequite longstanding. The first machines to start op-erating in collider mode in the distant 1965 werethe electron-electron colliders VEP-1 at the Instituteof Nuclear Physics (INP) in Novosibirsk and PSEC at

the Stanford Linear Accelerator Center (SLAC), re-spectively. In the same year the electron-positroncollider AdA at the National Laboratory in Frascatiand five years later in 1970 the first hadron col-lider Intersecting Storage Rings (ISR) at CERN be-came operational. Even in the initial stage of theoperation of accelerators in the collision mode ofthe stored beams, it was realized that beam-beaminteraction significantly limits the luminosity - oneof the main parameters of modern colliders. Atthe present time, it can be without hesitation statedthat beam-beam interaction represents one of themost complex problems in the physics of accelera-tors and chargedparticle beams. Despite significantprogress in understanding the relevant issues andunderlying processes, there is still no comprehen-sive picture that encompasses all the features andphysical details of beam-beam interaction.
Active work on the development and construc-tion of charged particle colliders began simultane-ously in the late 1950s in the laboratories of Fras-cati (Italy), SLAC (USA) and the Institute of NuclearPhysics (former USSR). The first to operate was the
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electron-positron collider AdA, built under the di-rection of the Austrian theoretician Bruno Touschekin Frascati. However, the first results were pub-lished a year later (1966) than the observationsof elastic scattering of electrons (1965) at the So-viet VEP-1 (Opposing Electron Beams), created un-der the direction of G. I. Budker and A. N. Skrin-sky. A little later, colliding beams were obtained inthe PSEC (Princeton-Stanford Experiment Collider).These first three colliders were test ones, demon-strating the possibility of studying the physics of ele-mentary particles. The first hadron collider was theproton synchrotron ISR, launched in 1970 at CERNwith beam energy of 32 GeV. The only linear colliderin history is the SLC (Stanford Linear Collider), whichoperated from 1988 to 1998.
Without claiming complete exhaustiveness, hereweshall try to trace the main and most important par-ticulars and achievements in the theoretical de-scription of beam-beam interaction. It is fair tosay that the progress in numerical simulation ofbeam-beam interaction is significantly greater thanthe achievements of the theoretical models pro-posed so far. The important developments in thisdirection remain outside our main goal here andtherefore we will not give them the necessary at-tention in the subsequent exposition. Historically,the first theoretical model of the beam-beam in-teraction is the so-called weak-strong model, alsoknownas the incoherent beam-beam interaction, towhich a special workshop [1] has been dedicated.In this model, it is assumed that one of the beamsis strong and rigid and does not undergo significantchanges (practically unmodified) in the collision pro-cess, and its role is to act on the other beam (con-sideredweak andmobile), the latter playing the roleof a dynamic probe and indicator of the interaction.Over the years, a huge number of articles have beenpublished, which are dedicated to various analyt-ical aspects, as well as to numerical simulation ofthe weak-strong model of beam-beam interaction.In hadron colliders, the natural damping mecha-nismdoes not exist, which can lead to classical diffu-sion along a network of intersecting stochastic lay-ers (the so-called Arnold diffusion) characteristic fornonlinear dynamical systems with many degrees offreedom. This phenomenon was first described inRef. [2].
The realistic model reflecting the collective natureof the interaction between the twomoving in oppo-site directions beams is called the strong-strong orcoherent beam-beam interaction model for short.In this model, the evolution of the two beams oc-curs synchronously, as the electromagnetic fieldcreated by each beam is influencing and modify-ing the other one at the interaction point. Basedon our awareness of the existing literature, the co-

herent beam-beam interaction in one dimensionwas first theoretically studied by Chao and Ruth [3]by solving the linearized Vlasov-Poisson equations.Since the pioneering work of Chao and Ruth, nu-merous papers based on the self-consistent Vlasovtechnique have been published, among which it isnecessary to note the article by Yokoya et al. [4]and, at the first place, that by Alexahin [5]. Inaddition to the above two articles, the literatureabounds with a whole host of interesting and im-portant works [6, 7, 8, 9], all of which, for obviousreasons, are impossible to mention, moreover thisis not our main goal here. Based on the macro-scopic hydrodynamic approach the results regard-ing the linear mode coupling, also known as the co-herent beam-beam resonance [3] have been gen-eralized in Ref. [10]. Unlike the standard techniquefor solving the Vlasov-Poisson system of equationsin terms of action-angle variables used in all refer-ences mentioned above, the approach used in Ref.[11] is implemented in a "mixed" phase space (oldcoordinates and new canonical momenta). In thisway, the formof the Poisson equation for the beam-beam potential(s) in Cartesian coordinates is pre-served, which is significantly simpler to handle an-alytically on one hand, and more computationallyefficient on the other.
The local nature of beam-beam interaction is an ex-cellent testbed for the application of the symplec-tic mappings approach, which is unfortunately lesspopular as compared to the Vlasov-Poisson tech-nique [12, 13] at the present moment of time. Anew approach to beam-beam interaction in circu-lar colliders, based on the symplectic twist mapmethod with subsequent regularization of the one-turn beam-beammap, has been developed in Refs.[14, 15]. Therein, a regularized symplectic beam-beam map has been proposed, which correctly de-scribes the long-term asymptotic behavior of theoriginal dynamical system. It has been shown thatthe regularized map possesses an integral of mo-tion that can be calculated in any desired order. Theinvariant density in phase space (stationary distri-bution function) has been constructed as a genericfunction of the integral of motion and a coupledsystem of nonlinear functional equations has beenobtained for the distributions of the two collidingbeams.
To study the coherent beam-beam instability, thepresent work follows a similar strategy [16]. The dif-ference as compared to Refs. [14, 15] is that insteadof tracking individual trajectories in phase space, astatistical mechanics approach is applied via a dis-tribution function of an ensemble of trajectories.The Frobenius-Perron operator of the density (distri-bution) function in phase space, sometimes calledthe Transfer Operator of this function or the phase-
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space density propagator, provides a powerful toolfor studying the dynamics of recurrent iterations ofthe distribution function itself. In other words, theFrobenius-Perron operator provides a rule to deter-mine how the evolution of phase-space densitiesover repeated iterations of the one-turn map is ac-complished.The article is organized as follows. In the follow-ing Section II., we briefly discuss the Hamiltonianformalism with an application to beam-beam inter-action and the main tool for its description arisingfrom this formalism, namely the coupled systemof Vlasov-Poisson equations. Section III. is devotedto the description of the Frobenius-Perron opera-tor method, as well as to an outline of some ofits main features and properties. The reduction ofthe Frobenius-Perron operator in the non-resonantcase by the Renormalization Group method is per-formed in Section IV., while technical details arepresented in B. Based on the Frobenius-Perron op-erator, the problem of coherent beam-beam reso-nances in one dimension is studied in detail in Sec-tion V.. The influence of beam-beam collisions onthe collider luminosity is studied in Section VI.. Lastbut not least, the conclusions and discussions ofthe obtained results, as well as future perspectivesand possible developments are presented in Sec-tion VII..

II. Hamiltonian Description
of Beam-Beam Interac-
tion

The two-dimensional model of coherent beam-beam interaction in a plane transversal to the indi-vidual particle orbits in each (k = 1, 2) beam is de-scribed by the Hamiltonian [17]
Hk =

R

2

(
p2x + p2y

)
+

1

2R

(
G(k)
x x2 +G(k)

y y2
)

+δp(θ)
Rqk

Eskβ2
sk

(
φ3−k − cβskAs(3−k)

)
. (1)

Here, (x, px, y, py) is the canonical conjugate pairof transverse variables, R is the mean collider ra-dius,G(k)
x,y are the linearmachine focusing strengthsfor each beam in the transverse directions and thepropagation of the latter is measured in terms ofthe azimuth θ adopted as the independent vari-able. In addition, qk are the corresponding particlecharges, c is the speed of light in vacuum, and Eskand βsk are the energy and the relative velocity ofthe synchronous particle, respectively. The periodicdelta-function δp(θ) multiplying the third term onthe right-hand-side of Equ. (1) reflects the locality ofthe interaction between the two beams occurring in

the vicinity of the interaction point. The electromag-netic scalar φ3−k and the longitudinal componentof the vector As(3−k) potential describing the fieldcreated by the opposing beam satisfy the followingequations
∇2

⊥φ3−k = −q3−kN3−kϱ3−k
ϵ0

, (2)

∇2
⊥As(3−k) = −µ0q3−kN3−kJs(3−k), (3)

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
,

in the ultra-relativistic limit. Here ϵ0 and µ0 arethe electric permittivity and the magnetic perme-ability of free space, respectively, Nk is the parti-cle number density of each beam, ϱk is the normal-ized (to unity) beam density, and Jsk is the beamcurrent in longitudinal direction. Since Js(3−k) =
−cβs(3−k)ϱ3−k , one obtains the obvious relation

As(3−k) = −
βs(3−k)

c
φ3−k. (4)

It is convenient to perform an appropriate scaling ofthe beam-beam potential according to the relation
φk =

qkNkβ
∗
1k

4πϵ0
Vk, (5)

and introduce the normalized canonical variables
x = q1

√
β1k, px =

1√
β1k

(p1 − α1kq1), (6)
with similar relations for the vertical canonical con-jugate pair (y, py), indexed by 2. The quantities α-sand β-s are the standard Twiss parameters, whilethe starred β∗ implies the corresponding Twiss pa-rameter at the interaction point. Taking into ac-count Equ. (4) – Equ. (6), the Hamiltonian (1) can becast in a normal form as

Hk =
χ̇1k

2

(
p21 + q21

)
+
χ̇2k

2

(
p22 + q22

)
+δp(θ)λkV3−k. (7)

where χ1,2k are the corresponding phase advancesand the "raised dot" ẇ implies differentiation of thecorresponding variable w with respect to the inde-pendent azimuthal variable θ. Moreover,

λk =
RrpZkZ3−kN3−kβ

∗
1(3−k)

Akγsk

1 + βskβs(3−k)

β2
sk

,

(8)is the so-called beam-beam parameter, where rpis the classical proton radius, Zk and Ak are thecharge state and the mass number of the particles
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in the k-th beam, respectively, and γsk is the cor-responding Lorentz factor. The normalized beam-beam potential V3−k satisfies the Poisson equation(
∂2

∂q21
+ κ3−k

∂2

∂q22

)
V3−k = −4πϱ3−k,

κ3−k =
β∗
1(3−k)

β∗
2(3−k)

. (9)
For the sake of simplicity and clarity, we shall con-sider in what follows the one-dimensional case inone of the transversal degrees of freedom. The par-ticle distribution function fk(q, p; θ) of each beam isa solution to the Vlasov equation

∂fk
∂θ

+ χ̇kp
∂fk
∂q

− ∂Hk

∂q

∂fk
∂p

= 0, (10)
while the normalized beam density is expressed as

ϱk(q; θ) =

∞∫
−∞

dpfk(q, p; θ), (11)
The locality of the beam-beam interaction, or inother words, the representation of the normal-ized beam-beam potential of the opposing beamas a thin electromagnetic element, suggests a sub-stantial simplification of the problem. It will bedemonstrated in what follows that the beam-beamcoupling between the two colliding beams can betreated to a certain extent exactly by means of anelegant technique involving transfer maps.

III. The Frobenius-Perron
Operator for the Beam-
BeamMap

It is assumed that the general reader is not famil-iar with the method of the Frobenius-Perron op-erator. For the sake of self-consistency of the ex-position, we follow closely Ref. [17], and brieflydwell here on some of its basics and general prop-erties. Consider a continuous multi-dimensional fi-nite degree-of-freedom dynamical system (not nec-essarily Hamiltonian) defined by a state vector x(t),where t denotes the independent (time) variable.The evolution of the system is described by the setof coupled first-order differential equations
dx

dt
= F(x,λ; t), (12)

whereF(x,λ; t) is a vector field andλ is a set of ad-ditional parameters. Next, define the distributionfunction f(x; t) characterizing the statistical prop-erties of the dynamical system and satisfying the Li-ouville equation
∂f(x; t)

∂t
+∇ · [F(x,λ; t)f(x; t)] = 0. (13)

Let us write the formal solution of the set of dy-namic equations (12) as
x(t) = X(x0,λ; t), (14)

where x0 = X(t0) is the initial condition at someinitial "time" t0. One can then verify in a straightfor-wardmanner that the solution of the Liouville equa-tion (13) reads as
f(x; t) =

∫
dzδ[x−X(z,λ; t)]f0(z), (15)

where f0(x) is the initial distribution function.For one-dimensional maps of the form
xn+1 = F (xn, λ), (16)

equation (15) can be written as
fn+1(x) = Ûfn(x) =

∫
dzδ[x− F (z, λ)]fn(z),

(17)where Û is the Frobenius-Perron operator. The de-fined above Frobenius-Perron operator can be writ-ten in a more explicit form as
Ûfn(x) =

∑
b

fn
[
F−1
b (x, λ)

]∣∣F ′
[
F−1
b (x, λ)

]∣∣ , (18)
where the index b runs over all the various branchesof the inverse map F−1 and F ′ implies differentia-tion with respect to x. The generalization to multi-dimensional maps is straightforward.The iterative one-dimensional beam-beammap canbe derived by formally solving the Hamilton’s equa-tions of motion
q̇ = χ̇kp, ṗ = −χ̇kq − λkδp(θ)V

′
3−k(q; θ),(19)where the "prime" denotes the partial derivativewith respect to the coordinate q. The result is[14, 15]

qn+1 = qn cosωk +
[
pn − λkV

′
3−k(qn)

]
sinωk,(20)

pn+1 = −qn sinωk +
[
pn − λkV

′
3−k(qn)

]
cosωk,(21)

ωk = 2πνk, (22)
where νk is the betatron tune related to the k-thbeam, and ωk is the corresponding one-turn beta-tron phase advance. It is worth emphasizing herethat the beam-beam map presented above is sym-plectic, which can be easily verified by direct explicitcheck of its Jacobian. According to Equ. (17) theFrobenius-Perron operator can be written as

f
(n+1)
k (q, p) =∫

dξdηδ
{
q − ξck −

[
η − λkV

′
3−k(ξ)

]
sk
}

δ
{
p+ ξsk −

[
η − λkV

′
3−k(ξ)

]
ck
}
f
(n)
k (ξ, η), (23)
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where ck = cosωk and sk = sinωk , respectively.In order to perform the integration, we manipulatethe allowed values of the arguments
q − ξck −

[
η − λkV

′
3−k(ξ)

]
sk = 0, (24)

p+ ξsk −
[
η − λkV

′
3−k(ξ)

]
ck = 0, (25)

of the delta-functions as follows. Multiplying Eq.(24) by ck and Equ. (25) by sk , and subtracting theresulting equations, we obtain
qck − psk − ξ = 0. (26)

Similarly, multiplying Equ. (24) by sk and Equ. (25)by ck , and summing up the resulting equations, wefind
qsk + pck − η + λkV

′
3−k(ξ) = 0, (27)

Rewriting Equ. (23) as
f
(n+1)
k (q, p) =

∫
dξdηδ(qck − psk − ξ)

δ
[
qsk + pck + λkV

′
3−k(ξ)− η

]
f
(n)
k (ξ, η), (28)

the above integral becomes trivial to be taken, andthe final form of the Frobenius-Perron operator canbe expressed as
f
(n+1)
k (q, p) = f

(n)
k

[
Q,P + λkV

′
3−k(Q)

]
, (29)

whereQ
P

 = RT
k

q
p

 , Rk =

 cosωk sinωk

− sinωk cosωk

 ,

(30)and the superscript T implies matrix transposition.Formally replacing the arguments z = (q, p)
T by

Rkz, we cast Equ. (29) in amore convenient for sub-sequent use form
f
(n+1)
k (Rkz) = f

(n)
k

[
q, p+ λkV

′
3−k(q)

]
. (31)

Introducing the formal small parameter ϵ account-ing for the perturbative character of the normalizedbeam-beam interaction potential, and the action-angle variables
q =

√
2J cos a, p = −

√
2J sin a, (32)

with
J =

1

2

(
q2 + p2

)
, a = − arctan

(
p

q

)
, (33)

we write the Frobenius-Perron operator repre-sented by Equ. (31) in the form
f
(n+1)
k (a+ ωk, J) = f

(n)
k

[
q, p+ ϵλkV

′
3−k(q)

]
.(34)

Here is the place to pay particular attention to thefollowing; exactly the same considerations are validfor the counter-circulating beam, for which a similarFrobenius-Perron operator can be derived. Thus,Equ. (34) and a similar one for the opposing beambecomes themain starting point of our further anal-ysis. Let us also note that Equ. (26) and Equ. (27) rep-resent the components of the inverse vector func-tion according to the expression on the right-handside of Equ. (18). Applying the latter taking into ac-count the fact that the denominator in Equ. (18) isunity (the beam-beam map is symplectic), one ar-rives at the same result for the Frobenius-Perronoperator as above. Some additional mathemati-cal properties of the Frobenius-Perron operator arepresented in A.

IV. Renormalization Group
Reduction of the
Frobenius-Perron Op-
erator

Equation (34) can be written in alternative form as
f
(n+1)
k (a+ ωk, J)

= exp [ϵλk(∂qV3−k)∂p]f
(n)
k (a, J), (35)

where for brevity the notations ∂(q,p) = ∂/∂(q, p)have been introduced. Since the beam-beam po-tential V3−k does not depend on the momentumvariable p, we can write
L̂3−k = (∂qV3−k)∂p − (∂pV3−k)∂q = (∂qV3−k)∂p,(36)where L̂3−k is the Liouvillian operator associatedwith V3−k. Let us note that in action-angle variablesthe Liouvillian operator acquires the form

L̂3−k = (∂aV3−k)∂J − (∂JV3−k)∂a. (37)
Thus, Equ. (35) becomes
f
(n+1)
k (a+ ωk, J) = exp

[
ϵλkL̂3−k

]
f
(n)
k (a, J).

(38)Let us premise for the time being that the beam-beam potential Vk(q) is a known function of thecoordinate displacement q. Here we will not putforward any further assumptions about the natureof the beam-beam potential as a function of thecanonical variable q; the latter depends essentiallyon the normalized density ϱ(q). It is straightforwardto check that the Fourier image of the beam-beampotential Ṽk(λ), defined as

Vk(q) =
1

2π

∞∫
−∞

dλṼk(λ)e
iλq, (39)

Vol. 6, Issue 1 254 ©G-Labs 2025



S.I. Tzenov J. Technol. Space Plasmas, Vol. 6, Issue 1 (2025)

Ṽk(λ) =

∞∫
−∞

dqVk(q)e
−iλq. (40)

possesses the following symmetry property
Ṽ ∗
k (λ) = Ṽk(−λ), (41)

where the asterisk implies complex conjugation.Note that Equ. (40) can be written as

Ṽk(λ) =
4π

λ2

∞∫
−∞

dqdpfk(q, p)e
−iλq

=
4π

λ2

∞∫
0

dJ

2π∫
0

dafk(a, J)e
−iλ

√
2J cos a. (42)

Using the Jacobi-Anger expansion [18, 19]
eiz cosφ =

∞∑
m=−∞

imJm(z)eimφ, (43)

where Jm(z) is the Bessel function of the first kindof orderm, we represent the beam-beam potentialin a Fourier series in the angle variable as follows
Vk(a, J) = V

(0)
k (J) + V

(a)
k (a, J)

= V
(0)
k (J) + 2

∞∑
m=1

V
(m)
k (J) cos (ma). (44)

The corresponding Fourier amplitudes are ex-pressed in explicit form as

V
(0)
k (J) =

1

2π

∞∫
−∞

dλṼk(λ)J0

(
λ
√
2J
)
, (45)

V
(m)
k (J) =

im

2π

∞∫
−∞

dλṼk(λ)Jm
(
λ
√
2J
)
. (46)

In obtaining the Fourier expansion given by
Equ. (44), the symmetry property V

(−m)
k (J) =

V
(m)
k (J) has been taken advantage of.Since the Frobenius-Perron operator approach is lit-tle known in the field of statistical description ofnonlinear dynamical systems, it is worth devotingsome attention, aside from the main exposition,to briefly acquainting the potential reader with itsmain characteristics and properties. Details can befound in B, where the case when both rotation fre-quencies ωk are far from nonlinear resonances ex-cited by the beam-beam potentials Vk is consid-ered. For completeness, the resonance structureof the Frobenius-Perron operator can also be ana-lyzed when one or both ωk are relatively close tocertain structural resonance(s) driven by the beam-beam potentials. The interested reader is referred

to Ref. [16] for details. It is instructive now to con-sider the non-resonant case, for which Equ. (134)for the renormalized amplitude of the distributionfunction in the continuous limit can bewritten in theform
∂F̃k
∂n

= −ωk∂aF̃k

+

[
λkL̂

(0)
3−k + λ2k

(
1

2
L̂
(0)2
3−k +Ω3−k∂a

)]
F̃k. (47)

Here [compare with Equ. (98) and Equ. (99)]
L̂
(0)
3−k = −ω(u)

3−k(J)∂a, ω
(u)
3−k(J) = ∂JV

(0)
3−k(J),(48)is the nonlinear first-order incoherent tune-shift,while [in analogy with Equ. (121)]

Ω3−k(ωk, J) =

∞∑
m=1

m cot
(mωk

2

)
×∂J

(
V

(m)
3−k∂JV

(m)
3−k

)
, (49)

is the nonlinear second-order incoherent tune-shift.Note that the operator M̂(0)
3−k defined by Equ. (137)is neglected as providing a higher-order correctionto the incoherent tune-shift.Equation (47) exhibits a very important and far-reaching property - there exists an equilibrium so-lution for the renormalized distribution function

F̃
(0)
k (J), which depends only on the action vari-ables. Moreover, there exist a damping mechanismacting on the fluctuation harmonics with respect tothe angle variables, such that the general solutionof the Fokker-Planck equation (47) rapidly relaxestowards the invariant density distribution.The relaxation rate to the invariant density distri-bution depends on the first-order incoherent tune-shift, and for this reason we shall now turn to itscalculation. Recalling that V (0)

k (J) is given by theexpression (45), and also that the Fourier image ofthe beam-beampotential is represented in the formof Equ. (42), we obtain
ω
(u)
3−k(J) = − 4√

2J

∫
dqdpf3−k(q, p)

×
∞∫
0

dλ

λ
J1

(
λ
√
2J
)
cos (qλ). (50)

The second integral (with respect to λ) in the aboveexpression is tabular [20] and can be taken in aclosed form as
∞∫
0

dx

x
Jn(cx)

sin bx

cos bx


=

1

n

sin [n arcsin (b/c)]

cos [n arcsin (b/c)]

 , (51)
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for 0 < b ≤ c. Thus, we have

ω
(u)
3−k(J) = − 4√

2J

∞∫
−∞

dp

×

√
2J∫

−
√
2J

dqf3−k(q, p) cos

[
arcsin

(
q√
2J

)]
. (52)

Taking into account the equilibrium distributionfunction
f
(0)
3−k(q, p) =

1

2πσ2
3−k

exp

(
−p

2 + q2

2σ2
3−k

)
, (53)

as well as the integral representation of the modi-fied Bessel function In(z) (see e.g. Ref. [19])

In(z) =
1

π

π∫
0

dτez cos τ cos (nτ), (54)

we obtain
ω
(u)
3−k(J) = −

√
2π

σ3−k

×
[
I0
(

J

2σ2
3−k

)
+ I1

(
J

2σ2
3−k

)]
× exp

(
− J

2σ2
3−k

)
. (55)

A similar expression for the incoherent beam-beamtune-shift has been previously obtained in Ref. [15].

2 4 6 8 10
J/σ2

1.0

1.5

2.0

2.5

-ωσ

Figure 1: Dependence of the first-order incoherent tune
shift −ω

(u)
3−kσ3−k as a function of the action

variable J/σ2
3−k given by Equ. (55).

It is sometimes useful in practice to evaluate the av-eraged incoherent tune shift

⟨ω3−k⟩ =
∞∫
0

dJf
(0)
3−k(J)ω

(u)
3−k(J). (56)

Taking into account the expression [20]
∞∫
0

dxe−pxIn(cx) =
cn√

p2 − c2
(
p+

√
p2 − c2

)n ,
(57)for p > c, we obtain

⟨ω3−k⟩ = − 1

2σ3−k
√
π

4 + 2
√
2

3 + 2
√
2
. (58)

The dependence of the first-order incoherent tuneshift as a function of the action variable is shownin Fig. (1). For typical characteristic parameters ofthe magnetic structure for the NICA collider at theJoint Institute for Nuclear Research (JINR) in Dubnaand the number of particles in each of the beams
Nk ∼ 4 × 109, the incoherent tune shift is of theorder of λk⟨ω3−k⟩ ∼ 0.016.

V. Linearized Frobenius-
Perron Operator and
Stability of Coherent
Beam-Beam Resonances

In the preceding Section, it was shown that the equi-librium distribution function is an arbitrary functiondepending solely on the action variables. The an-swer to the question of what exactly and of whatkind the invariant phase-space density should beanyway, was not given in an unambiguous form.To answer this question, a better strategy consistsin the following; suppose that it is possible to con-struct integral(s) of motion [generalized action vari-able(s)] describing the dynamics of the beam-beammap (20) – (21). Then, the equilibrium distributionfunctions G1,2 for the two beams satisfy coupledfunctional equations that can in principle be solvedat least perturbatively. Such approach has been de-veloped and followed in Ref. [15]. In the presentwork we are not interested in the static equilibriumbehavior of the beamdistributions, but rather in thetemporal evolution of the dynamic motions of thebeamdistributions around the equilibriumdistribu-tionsGk , that is
f
(n)
k (a, J) = F (n)

k (a, J) +Gk(J). (59)
Substituting Equ. (59) into Equ. (38) and retaining
only the first order terms in F (n)

k , we obtain the lin-earized Frobenius-Perron operator
F (n+1)
k (a+ ωk, J) = F (n)

k

(
a− λkω

(u)
3−k, J

)
+λk

[
∂aV(n)

3−k

(
a− λkω

(u)
3−k, J

)]
G′
k(J), (60)
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for k = 1, 2, where G′
k denotes derivative with re-spect to the action variable J . In addition

V(n)
k (a, J) = 2

∞∫
−∞

dλ

λ2
eiλ

√
2J cos a

×
∫

da′dJ ′F (n)
k (a′, J ′)e−iλ

√
2J′ cos a′ , (61)

are the first-order beam-beampotentials calculated
with the perturbed distribution functionF (n)

k (a, J).In order to solve the linear recurrence equation(60), we note that the linearized distribution func-tion F (n)
k (a, J)may be represented as

F (n)
k (a, J) = Gk(J)

∞∑
l=−∞

g
(l)
k (J, n)eila. (62)

To this end, g(l)k (J, n) are yet unknown Fourier har-monics, which, as will become clear from the sub-sequent exposition, determine the linear stability ofthe linearized Frobenius-Perron operator.Assuming the equilibrium distribution function Gkto be of the form (53), for small beam sizes σk , thefollowing formal trick
Gk(J)G3−k(J

′) = Ck exp
(
− J

σ2
k

− J ′

σ2
3−k

)
= Ck exp

(
− J ′

σ2
3−k

+
J ′

σ2
k

− 2
√
JJ ′

σ2
k

)

× exp

−
(√

J −
√
J ′
)2

σ2
k


∼ σk

√
πGk(J)G3−k(J

′)δ
(√

J −
√
J ′
)
,

is valid. The above expression can be symmetrizedwith respect to the sizes of both beams and as a re-sult we finally obtain
Gk(J)G3−k(J

′)

= σ
√
πGk(J)G3−k(J

′)δ
(√

J −
√
J ′
)
, (63)

where σ = (σ1 + σ2)/2. Next, we substitute theansatz (62) into Equ. (61). To perform the integralentering Equ. (61), we use the Jacobi-Anger identity(43), as well as the well-known relation between theBessel functions [19]
Jn−1(z) + Jn+1(z) =

2n

z
Jn(z). (64)

Equating similar harmonics with respect to the an-gle variable (proportional to eila) in the linearizedFrobenius-Perron operator (60), we obtain
Gkg

(l)
k (n+ 1) = e

−il
(
ωk+λkω

(u)
3−k

)
Gk

[
g
(l)
k (n)

+2Jλk
σ

σ2
k

√
2πG3−k

∞∑
m=−∞

Mlmg
(m)
3−k(n)

]
. (65)

The infinite matrixM can be expressed as

Mlm =

{
32il

[(l+m)2−1][(l−m)2−1]
, if l +m = even,

0, if l +m = odd,(66)where use has been made of the tabular integral[20]
∞∫
0

dz

z
Jm(cz)Jn(cz) =

2

π(n2 −m2)
sin

(n−m)π

2
.

(67)
If g(l)k (n) does not depend on the action variable,Eq. (65) can be further simplified by integratingaway the action variable from its both sides. Thisapproximation however, is valid if and only if the
perturbed betatron tunes ωk + λkω

(u)
3−k do not de-pend on the action J , which obviously is not thecase. The dependence on the action variable leadsto an effect similar to Landau damping, well-knownin plasma physics, which we shall neglect in whatfollows. Another justification for the validity ofsuch an approximation is the rapid decrease of theincoherent tune shift as a functional dependenceon the action variable J clearly visible in Fig. (1).Thus, the first-order incoherent tune shift can beapproximately replaced by its average value givenby Equ. (58). With all of the above in hand, Equ. (65)can be cast in the form of a single-turn map

g
(l)
k (n+ 1) = e−il(ωk+λk⟨ω3−k⟩)

×

[
g
(l)
k (n) + λ̃k

∞∑
m=−∞

Mlmg
(m)
3−k(n)

]
, (68)

where

λ̃k =

√
2

π
λk
σσ2

3−k
Σ4

, Σ2 = σ2
1 + σ2

2 , (69)

Consider now an isolated coherent beam-beam res-onance of the form
n1ω̃1 + n2ω̃2 = 2πs+∆, (70)

where n1, n2 and s are integers, the quantity ∆ isthe resonance detuning, and
ω̃k = ωk + λk⟨ω3−k⟩, (71)

are the perturbed betatron tunes for each beam. Tostudy the stability of the isolated coherent beam-beam resonance of the form (70), we retain onlythe ±n1 and the ±n2 elements in the infinite ma-trixMlm, the transformationmatrix of the coupled
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Figure 2: Stability diagram (the shaded region) of a co-
herent beam-beam coupling resonance of the
form given by Equ. (70), where n1 = n2 =
1. The plot is presented in the fractional part
of the tune (ν1, ν2)-space. For demonstrative-
ness, the beam-beam parameter is taken to be
λk ∼ 4.7712× 10−5.

map equations (68) can be expressed as
e−iψ1 0 α1e

−iψ1 α1e
−iψ1

0 eiψ1 −α1e
iψ1 −α1e

iψ1

α2e
−iψ2 α2e

−iψ2 e−iψ2 0

−α2e
iψ2 −α2e

iψ2 0 eiψ2

 ,

(72)where
ψk = nkω̃k, α1 = λ̃1Mn1n2 ,

α2 = λ̃2
n2
n1

Mn1n2
. (73)

The transition matrix (72) contains all the informa-tion about the stability of our system in the processof successive beam-beam kicks, therefore it is im-perative to investigate its eigenvalues. The latter arethe roots of the secular equation(
µ2 − 2µ cosψ1 + 1

)(
µ2 − 2µ cosψ2 + 1

)
+2α1α2

×[cos (ψ1 − ψ2)− cos (ψ1 + ψ2)]µ
2 = 0. (74)

The above equation (74) can be converted into amore convenient form as follows(
µ2 − 2c1µ+ 1

)(
µ2 − 2c2µ+ 1

)
= 0, (75)

where
c1,2 =

1

2
(cosψ1 + cosψ2)

±1

2

√
(cosψ1 − cosψ2)

2 − 4A sinψ1 sinψ2, (76)

A = λ̃1λ̃2
n2
n1

M2
n1n2

. (77)
The motion is stable if the coefficients c1,2 given byEq. (76) simultaneously satisfy the conditions

−1 ≤ c1,2 ≤ 1. (78)
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Figure 3: Stability diagram (the shaded region) of a co-
herent nonlinear beam-beam resonance of the
form given by Equ. (70), where n1 = 1, n2 =
3. The plot is presented in the fractional part
of the tune (ν1, ν2)-space. For demonstrative-
ness, the beam-beam parameter is taken to be
λk ∼ 4.7712× 10−5.

Figure 2 shows the stability region (shaded area)of the linear beam-beam coupling resonance ω̃1 +
ω̃2 = 2πs+∆ in the space of the fractional part ofthe shifted betatron tunes ν̃1 and ν̃2 [compare withEqu. (71)]. For a better clarity in the visualization ofthe structure and shape of the islands of instability,an increased value of the beam-beamparameterλkcorresponding toNk ∼ 4×1010 number of particlesin each beam has been taken.
Note that according to Equ. (66) only nonlinearbeam-beam resonances of even order are possi-ble. Furthermore, the elements of the infinite ma-trixMlm decrease quite rapidly with the resonanceorder, which leads to a drastic reduction of the res-onant driving term. For comparison, Fig. (3) showsthe stability diagram in the case of a fourth-ordercoherent nonlinear beam-beam resonance ω̃1 +
3ω̃2 = 2πs + ∆. The instability region consists ofnarrow resonance stopbands together with islandsof instability scattered around them. There is a suf-ficiently wide band of stability, which greatly facili-tates the felicitous selection of the operating beta-tron tunes. In this sense, nonlinear coherent beam-
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Figure 4: Stability diagram (the shaded region) of a co-
herent beam-beam coupling resonance of the
form given by Equ. (70), where n1 = n2 = 1.
The plot is presented in the fractional part of
the tune (ν1, ν2)-space. The beam-beam pa-
rameter is taken to be λk ∼ 4.7712 × 10−6,
which corresponds to the realistic case, where
Nk ∼ 4× 109.

beam resonances are significantly less dangerousthan the linear coupling resonance.
Finally, Fig. (4) presents the realistic situation show-ing the stability diagram of the linear coherentbeam-beam resonance at a value of the beam-beam parameter λk ∼ 4.7712 × 10−6 correspond-ing to Nk ∼ 4 × 109 number of particles in eachbeam. A central narrow resonance stopband andscattered satellite narrow stopbands and small is-lands of instability are clearly visible.
Figures 2 – 4 refer to typical characteristic param-eters of the NICA collider magnetic and interac-tion point structure being under construction at theJoint Institute for Nuclear Research (JINR) for fullystripped gold atoms 197Au79+.

VI. Beam-Beam Collisions Ef-
fect on Collider Luminos-
ity

In modern colliders, in addition to the energy ofthe circulating charged particle beams, the numberof beneficial interactions (events) in the course oftheir successive collisions at the interaction point(s)is also of particular importance. The quantity thatmeasures the ability of a particle accelerator to pro-duce the required number of interactions is calledthe luminosity. In the case of head-on collisions, the

luminosity is proportional to the overlap integral ofthe colliding beams’ density distribution functions[21, 22], and is given by the expression
L = κL, κ = 2N1N2FNb, (79)

where F is the revolution frequency and Nb is thenumber of bunches in one beam. The quantity L isthe overlap integral

L =

∞∫
−∞

dqϱ1(q)ϱ2(q), (80)

where the normalized beam density ϱk(q) of eachbeam (k = 1, 2) is given by Equ. (11).
It is interesting and important to estimate the lu-minosity variation per unit collision given an estab-lished equilibrium distribution. For this purposeit is necessary to represent the expansion of theFrobenius-Perron operator (29) about the equilib-rium distributionGk(q, p) up to first order in termsof the small formal (beam-beam) parameter as
fk(q, p) = Gk(q, p) + λk[∂QV3−k(Q)]∂PGk(q, p).(81)Note that the orthogonal transformation (30) fromthe old (q, p) canonical variables to the new ones
(Q,P ) does not change the overall appearance ofthe quadratic form entering the equilibrium distri-bution function (53). The next step is to calculatethe perturbed beam density in configuration space

ϱk(q) = ϱ0,k(q)+λk

∞∫
−∞

dp[∂QV3−k(Q)]∂PGk(q, p).

(82)Integration by parts and utilization of the factthat the beam-beam potential satisfies the Poissonequation (9), yields
ϱk(q) = ϱ0,k(q)− 2πλk sin 2ωk

×
∞∫

−∞

dpGk(q, p)ϱ0,3−k(q cosωk − p sinωk). (83)

The well-known Gaussian integral
∞∫

−∞

dx exp
[
−
(
ax2 + bx+ c

)]
=

√
π

a
exp

(
b2

4a
− c

)
, (84)

can be used to perform the integral in Equ. (83). Theresult is
ϱk(q) = ϱ0,k(q)−∆ϱk(q), (85)

Vol. 6, Issue 1 259 ©G-Labs 2025



S.I. Tzenov J. Technol. Space Plasmas, Vol. 6, Issue 1 (2025)

where
∆ϱk(q) =

λk sin 2ωk
σkSk

× exp

[
− q2

2σ2
3−k

(
C2
k

σ2
k

− σ2
ks

2
kc

2
k

S2
k

)]
. (86)

Here, as before sk = sinωk and ck = cosωk , whilethe quantities Sk and Ck are given by the expres-sions
S2
k = σ2

ks
2
k + σ2

3−k, C2
k = σ2

kc
2
k + σ2

3−k. (87)
Finally, the luminosity variation per unit collisioncan be expressed as

∆L = ∆L1 +∆L2, (88)
where

∆L1 = −
∞∫

−∞

dqϱ0,2(q)∆ϱ1(q), (89)

and a similar expression for ∆L2, in which the in-dices "1" and "2" on the right-hand side swap places.More explicitly
∆Lk = −λk sin 2ωk

σkSk

(
1 +

C2
k

σ2
k

− σ2
ks

2
kc

2
k

S2
k

)−1/2

.

(90)There are several intriguing features in Equ. (90)striking at first glance that are worth commentingon briefly here. First, the luminosity variation perunit collision is proportional to the beam-beam pa-rameter λk , which is to be expected. An even moreimportant peculiarity is the dependence of∆Lk onthe phase advance per one revolution ωk. This es-sentially means that the betatron tunes νk can bechosen such that sin 2ωk < 0, which directly im-plies 1/4 < Frac(νk) < 1/2, where Frac(νk) be-ing the fractional part of the betatron tune. In thisway an addition of luminosity per kick (althoughof the order of the beam-beam parameter) in thecourse of successive beam-beam collisions could beachieved.

VII. Concluding Remarks

As already mentioned, the beam-beam phe-nomenon is a very difficult subject, which includesmany different effects, subdivided on the one handinto incoherent and coherent effects, and on theother hand into equilibrium and non-equilibriumones. The equilibrium ones include the process ofestablishing an equilibrium phase-space densitydistribution, and among the non-equilibriumprocesses, the nonlinear oscillations and reso-nance phenomena with possible transition to

stochasticity should be mentioned. There alsoexist quasi-equilibrium processes induced by thebeam-beam force, which qualify as bifurcationphenomena leading to the highly unfavorableeffect, also known as the "flip-flop" effect [11].
In the present work, a detailed analysis of the es-tablishment of an equilibrium density distributionin phase space and the relaxation towards the lat-ter has been studied analytically. Furthermore, thebehavior of the perturbed from equilibrium distri-bution function with respect to the coherent sta-bility of the colliding beams, is carried out in linearapproximation. Although we do not claim that thelatter is the only important effect that arises in thebeam-beam interaction, we suggest that coherenteffects are indeed one of themost dominant beam-beam features. Unlike most publications devotedto the application of the self-consistent method ofthe nonlinear Vlasov-Poisson system to the studyof beam-beam interaction, in this paper we havechosen an alternative strategy using the elegant ap-proach of the Frobenius-Perron operator for sym-plectic twist maps.
The Renormalization Group (RG) method has beenapplied to study the stochastic properties of theFrobenius-Perron operator for symplectic twistmaps of the most general type and in particular forthe beam-beam twist map. After a brief introduc-tion and derivation of the Frobenius-Perron oper-ator for a beam-beam symplectic map with rota-tion, the case where the unperturbed rotation fre-quency (unperturbed betatron tune) of the map isfar from the structural resonances driven by thebeam-beam kick perturbation has been analyzedin detail. It has been shown that up to second or-der in the beam-beam perturbation kick, the renor-malized map propagator (equivalently, the renor-malized Frobenius-Perron operator) with nonlinear
stabilization (L̂(0)

k ̸= 0
) describes a random walk

of the angle variable. This in turn implies two im-portant consequences: first, there exists an equilib-rium distribution depending only on the action vari-able and second, the relaxation rate to this invariantdistribution depends on the nonlinear (incoherent)tune shift and takes place only with respect to theangle variable. Further, the incoherent beam-beamtune shift as a function of the action variable hasbeen calculated explicitly.
The linearized Frobenius-Perron operator for eachof the two beams actually implies a discrete formof the linearized Vlasov equations. This essentiallyis equivalent to and signifies a new method for cal-culating coherent beam-beam instabilities using amatrix mapping technique. It offers a very simpledescription of the coherent beam-beam interactionand allows straightforward numerical calculations.In particular, the handling of the infinite system of
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linear map equations (as far as this is practicallypossible) allows the simultaneous treatment of allnonlinear resonances, taking into account the cou-pling between them. In the special case of an iso-lated coherent beam-beam resonance, a stabilitycriterion for coherent beam-beam resonances hasbeen found in closed form.An intriguing particular concerning the effect of in-dividual successive beam-beam collisions on col-lider luminosity has been found explicitly. Anaddition of luminosity per kick (small though, ofthe order of the beam-beam parameter) in thecourse of successive beam-beam collisions could beachieved.As for other merits of the method described herethat have remained hidden in the main body of thearticle, it is worth noting two additional ones asfollows. The Frobenius-Perron operator approachcan be generalized without much difficulty to sys-tems with more than one degree of freedom, soas to cover both transverse directions and, if nec-essary, the longitudinal degree of freedom as well.Combined with an adequate Poisson solver, theFrobenius-Perron operator, especially in its Carte-sian coordinate and momentum representation,can represent a tool of particular value for the nu-merical simulation of the beam-beam interaction.Its numerical implementation may provide a won-derful opportunity not only to track the orbits of in-dividual particles, but also to follow and describethe dynamic evolution of an entire statistical distri-bution of an ensemble of particles. Such general-izations can turn the Frobenius-Perron operator ap-proach into an indispensable tool in studying beam-beam effects in asymmetric lepton-hadron colliders[23].
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X. Appendix

A Some Properties and Ad-
joint of the Frobenius-
Perron Operator

Combining Eqs. (29) and (30) the Frobenius-Perronoperator (18) for the symplectic beam-beam twistmap can be represented in a compact form as fol-lows

Ûk = R̂(−ωk) exp {λk[∂qV3−k(q)]∂p}, (91)

where R̂(α) denotes the rotation of the canonicalcoordinates in phase space by an angle α, specifiedby the orthogonal matrix (30).
First, let us establish one of the most importantproperties of the Frobenius-Perron operator con-cerning the conservation of phase space volume.Consider the following integral

∫
dqdpÛkfk(q, p)

=

∫
dqdpfk

[
Q,P + λkV

′
3−k(Q)

]
. (92)

Replacing the integration variables (q, p) −→
(Q,P ) on the right-hand side of the above equationand taking into account the fact that dqdp = dQdPunder orthogonal transformation, we rewrite theright-hand side as
∫

dQdP

∞∑
m=0

λmk
m!

[∂QV3−k(Q)]
m
∂mP fk(Q,P )

=

∫
dQdPfk(Q,P ) = Vps. (93)

In the left-hand side of the above equation, succes-sive integration by parts has been performed andthe independence of the beam-beam potential onthe momentum variable P has been taken into ac-count.
The operator Û†

k adjoint to the Frobenius-Perron
operator Ûk acting in phase space is defined by [24]
∫

dqdpgk(q, p)Ûkfk(q, p) =

∫
dqdpfk(q, p)Û

†
kgk(q, p).
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We transform the left-hand side of Eq (94) as follows∫
dqdpgk(q, p)Ûkfk(q, p)

=

∫
dqdpgk(q, p) exp {λk[∂QV3−k(Q)]∂P }

×fk(Q,P ) =
∫

dQdPR̂(ωk)gk(Q,P )

× exp {λk[∂QV3−k(Q)]∂P }fk(Q,P )

=

∫
dQdPfk(Q,P ) exp {−λk[∂QV3−k(Q)]∂P }

R̂(ωk)gk(Q,P ). (94)
From all of the above, it follows that the adjoint op-erator can be written in the form

Û†
k = exp {−λk[∂qV3−k(q)]∂p}R̂(ωk). (95)

The adjoint operator to the Frobenius-Perron oper-ator is also known as the Koopman operator.

B Derivation of the Am-
plitude Equation for a
Generic Potential. Non-
resonant Case

To be as general as possible, consider an arbitrarypotential U(a, J) written in angle-action variablesas
U(a, J) = V0(J) + V (a, J). (96)

Respectively, the Liouvillian operator can be writtenas
L̂U = L̂0 + L̂, (97)

where
L̂0 = −ωu(J)∂a, L̂ = (∂aV )∂J − (∂JV )∂a,(98)and

ωu(J) = ∂JV0. (99)
The Frobenius-Perron operator, which will be thesubject of renormalization group reduction in thisAppendix can be written as

fn+1(a+ ω, J) = exp
(
ϵL̂U

)
fn(a, J). (100)

In what follows, we adhere closely to Ref. [16].Initially, we consider the case, where the basic ro-tation frequency ω is away from nonlinear reso-nances driven by the potential V . Following thestandard procedure of the renormalization groupmethod [17], we seek a solution to equation (100)by naive perturbation expansion
fn(a, J) =

∞∑
k=0

ϵkf (k)n (a, J), (101)

where the unknown functions f (k)n (a, J) should bedetermined order by order.
Ba) Calculation of Secular Terms

1. The zero-order equation

f
(0)
n+1(a+ ω, J) = f (0)n (a, J), (102)

possesses the obvious solution
f (0)n (a, J) = exp (−nω∂a)F (a, J) = F (an, J),(103)where an = a−nω. To this end F (a, J) is a genericfunction of its arguments, which will be the subjectof the renormalization group reduction in the se-quel.

2. The first-order equation can be written as fol-lows
f
(1)
n+1(a+ ω, J)− f (1)n (a, J) =

(
L̂0 + L̂

)
F (an, J).

(104)Note that since the above equation is linear, theright-hand side will give rise to two kinds of termsin the corresponding solution, one of them secu-lar (proportional to the discrete "time" n), while theother one is regular, containing oscillation harmon-ics of the rotation frequency ω and the angle vari-able a. For this purpose, let us represent the solu-tion of Eq. (104) as follows
f (1)n (a, J) = ϕn(a, J) + ψn(a, J). (105)

The first term (which will turn out to be secular) sat-isfies the equation
ϕn+1(a+ ω, J)− ϕn(a, J) = L̂0F (an, J). (106)

It is straightforward to verify that the solution of theabove equation is
ϕn(a, J) = nL̂0F (an, J), (107)

The second term in the representation (105) satis-fies the equation
ψn+1(a+ ω, J)− ψn(a, J) = L̂F (an, J). (108)

Since the angle-dependent part of potential
V (a, J), the arbitrary function F (a, J) and thesought-for function ψn(a, J) are periodic in theangle variable a, we can represent them as aFourier series

V (a, J) =
∑
m ̸=0

Vm(J)eima, (109)
F (a, J) =

∑
s

Fs(J)e
isa, (110)
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ψn(a, J) =
∑
k

G
(n)
k (J)eika. (111)

We substitute the above expansions into both sidesof Equ. (108) and after equating similar harmonics,we obtain
G

(n+1)
k eikω −G

(n)
k

=
∑
m

[
imVmF

′
k−m − i(k −m)V ′

mFk−m
]

×e−i(k−m)nω. (112)
Here, the primes indicate differentiation with re-spect to the action variable J . It is straightforwardto verify that the solution of equation (112) has theform

G
(n)
k =

∑
m

e−imω/2

2i sin (mω/2)

×
[
imVmF

′
k−m − i(k −m)V ′

mFk−m
]

×e−i(k−m)nω. (113)
Substituting back expression (113) into the expan-sion (111) for the function ψn and rearrangingterms, we obtain

ψn =
∑
m,s

eim(a−ω/2)

2i sin (mω/2)

×[imVmF
′
s − isV ′

mFs]e
is(a−nω). (114)

The expression (114) for ψn can be converted to aclosed form such that the first-order solution to thefirst-order equation (104) reads as
f (1)n (a, J) =

(
nL̂0 + L̂ω

)
F (an, J), (115)

where
L̂ω = (∂aVω)∂J − (∂JVω)∂a. (116)

Furthermore, the potential Vω is defined accordingto the expression
Vω(a, J) = V1

(
a− ω

2
, J
)
, (117)

V1(a, J) =
∑
m ̸=0

Vm(J)eima

2i sin (mω/2)
. (118)

3. The second-order equation is
f
(2)
n+1(a+ ω, J)− f (2)n (a, J)

=
(
L̂0 + L̂

)
f (1)n (a, J)

+
1

2

(
L̂0 + L̂

)2
F (an, J). (119)

Since we are interested in the secular solution ofEqu. (119), we retain on its right-hand side onlyterms that would yield a secular contribution. Thus,

the second-order equation giving rise to a secularsolution can be written as
f
(2)
n+1(a+ ω, J)− f (2)n (a, J)

=

[(
n+

1

2

)
L̂2
0 + nL̂L̂0 +Ω(ω, J)∂a

]
×F (an, J). (120)

where
Ω(ω, J) =

∞∑
m=1

m cot
(mω

2

)
∂J(Vm∂JVm). (121)

Note that the last operator Ω(ω, J)∂a on the right-hand side of Equ. (120) is the angle-independentpart of the sum L̂L̂ω + L̂2/2.The first and last terms on the right-hand side ofEqu. (120) can be treated in a way analogous to thetreatment of Equ. (106). Consider the solution of theequation
Ψn+1(a+ ω, J)−Ψn(a, J) = nL̂L̂0F (an, J).(122)Using the representations (110) and (111), we canwrite the solution of the above equation as

Ψn(a, J) =
∑
k

G(n)
k (J)eika. (123)

It can be verified by direct substitution that the func-
tions G(n)

k (J) are given by the expression
G(n)
k =

∑
m

(nAkm +Bkm)e−i(k−m)nω, (124)
where

Akm =
e−imω/2

2i sin (mω/2)

×
[
imVmW

′
k−m − i(k −m)V ′

mWk−m
]
, (125)

Bkm =
1

4 sin2 (mω/2)

×
[
imVmW

′
k−m − i(k −m)V ′

mWk−m
]
, (126)

and the new function W (a, J) = L̂0F (a, J) havebeen introduced. Based on the obvious parallel be-tween Equ. (123) and Equ. (114), for the secular so-lution of the second-order equation (120) we obtain
f (2)n (a, J) =

[
n2

2
L̂2
0 + nL̂ωL̂0 + nΩ(ω, J)∂a

]
×F (an, J).(127)

Bb) Derivation of the Amplitude Equa-
tion

To remove secular terms (proportional to n and n2)in the first-order (115) and second-order (127) so-lutions, we define a renormalization group trans-formation F (a, J) −→ F̃ (a, J ;n) by collecting all
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terms proportional to F (an, J)
F̃ (an, J ;n)

=

[
1 + ϵnL̂0 + ϵ2

(
n2

2
L̂2
0 + nΩ∂a

)]
×F (an, J). (128)

Solving perturbatively the above equation for
F (an, J) in terms of F̃ (an, J ;n), we obtain the fol-lowing
F (an, J) =

(
1− ϵnL̂0 + . . .

)
F̃ (an, J ;n). (129)

Sticking closely to Refs. [17, 25, 26] we define a dis-crete version of the renormalization group ampli-tude equation by considering the difference
F̃ (an, J ;n+ 1)− F̃ (an, J ;n)

=

{
ϵL̂0 + ϵ2

[(
n+

1

2

)
L̂2
0 +Ω∂a

]}
F (an, J).(130)

Substituting the expression forF (an, J) in terms of
F̃ (an, J ;n) from Equ. (129), we can eliminate secu-lar terms up to O(ϵ2). The result is as follows

F̃ (an, J ;n+ 1)− F̃ (an, J ;n)

=

[
ϵL̂0 + ϵ2

(
1

2
L̂2
0 +Ω∂a

)]
F̃ (an, J ;n). (131)

Equation (131) is the sought-for renormalizationgroup amplitude equation. It describes the evo-lution of the distribution function on slower timescales in addition to the fast regular oscillationswiththe fundamental rotation frequency ω.
An important remark is in order at this point. Notethat once the renormalization transformation hasbeen performed, the second term (which is propor-tional to n and, therefore, secular) in the second or-der solution (127) is eliminated automatically. Tosee this, combine it with the second (non-secular)term in the first-order solution (115). Thus, we ob-tain

ϵL̂ωF + ϵ2nL̂ωL̂0F

= ϵL̂ω

(
1− ϵnL̂0

)
F̃ (n)

+ϵ2nL̂ωL̂0F̃ (n) = ϵL̂ωF̃ (n). (132)
To first order in the perturbation parameter ϵ therenormalized solution to Equ. (100) can be writtenas

fn(a, J) =
(
1 + ϵL̂ω

)
F̃ (an, J ;n), (133)

where the renormalized amplitude F̃ (an, J ;n) sat-isfies the renormalization group amplitude equa-

tion (131). In the continuous limit Equ. (131) ac-quires the form
∂F̃ (an, J ;n)

∂n

=

[
ϵL̂0 + ϵ2

(
1

2
L̂2
0 +Ω∂a

)]
F̃ (an, J ;n). (134)

The above is a Fokker-Planck equation with theFokker-Planck operator acting only on the anglevariable.In order to modify the renormalization reductionprocedure of the Frobenius-Perron operator justdescribed into an approach suitable for our pur-poses here, an important addition is necessary tobe worked out at this point. Since the beam-beampotential functionally depends on the distributionfunction, it itself represents a perturbation series in
ϵ in the sense of an order of magnitude. Thus, therepresentation (96) must be replaced by

U(a, J) = V0(J) + V (a, J)

+ϵ[W0(J) +W (a, J)] + . . . . (135)
Respectively, the Liouvillian operator can be writtenas

L̂U = L̂0 + L̂+ ϵ
(
M̂0 + M̂

)
, (136)

where
M̂0 = −ωw(J)∂a, M̂ = (∂aW )∂J − (∂JW )∂a,(137)and

ωw(J) = ∂JW0. (138)
The result of adding the first-order potentials W0and W (depending on the first-order distributionfunction) is the appearance of an additional term
ϵ2M̂0F̃ (an, J ;n) on the right-hand side of therenormalization group amplitude equation (131).All this term does is introduce a higher-order cor-rection to the incoherent tune shift without chang-ing the character of the Fokker-Planck operator inthe amplitude equation, as this operator continuesto act in the subspace of the angle variables alone.

Open Access This article is licensed under a Cre-ative Commons Attribution 4.0 International Li-cense, which permits use, sharing, adaptation, dis-tribution and reproduction in any medium or for-mat, as long as you give appropriate credit to theoriginal author(s) and the source, provide a linkto the Creative Commons license, and indicate ifchanges were made. The images or other thirdparty material in this article are included in the ar-ticles Creative Commons license, unless indicated
Vol. 6, Issue 1 265 ©G-Labs 2025



S.I. Tzenov J. Technol. Space Plasmas, Vol. 6, Issue 1 (2025)

otherwise in a credit line to the material. If mate-rial is not included in the article’s Creative Commonslicense and your intended use is not permitted bystatutory regulation or exceeds the permitted use,you will need to obtain permission directly from thecopyright holder. To view a copy of this license, visit:http://creativecommons.org/licenses/by/4.0/.

Vol. 6, Issue 1 266 ©G-Labs 2025


	Introduction
	Hamiltonian Description of Beam-Beam Interaction
	The Frobenius-Perron Operator for the Beam-Beam Map
	Renormalization Group Reduction of the Frobenius-Perron Operator
	Linearized Frobenius-Perron Operator and Stability of Coherent Beam-Beam Resonances
	Beam-Beam Collisions Effect on Collider Luminosity
	Concluding Remarks
	Acknowledgements
	References
	Appendix
	Some Properties and Adjoint of the Frobenius-Perron Operator
	Derivation of the Amplitude Equation for a Generic Potential. Non-resonant Case
	Calculation of Secular Terms
	Derivation of the Amplitude Equation


