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Unlike most publications devoted to the application of the self-consistent method of the nonlinear Vlasov-
Poisson system to the study of beam-beam interaction, in this article an alternative strategy using the elegant
approach of the Frobenius-Perron operator for symplectic twist maps has been developed. A detailed analysis
of the establishment of an equilibrium density distribution in phase space, as well as the behavior of the
perturbed distribution function with respect to the coherent stability of the two beams, has been carried out.
Using the Renormalization Group technique for the reduction of the Frobenius-Perron operator, the case
where the unperturbed rotation frequency (unperturbed betatron tune) of the map is far from any structural
resonance driven by the beam-beam kick perturbation has been analyzed in detail. It has been shown that up
to second order in the beam-beam parameter, the renormalized map propagator with nonlinear stabilization
describes a random walk of the angle variable, implying that there exists an equilibrium distribution function
depending only on the action variable.

The linearized Frobenius-Perron operators for each beam imply a discrete form of the linearized Vlasov equa-
tions, which essentially comprises a new method for calculating coherent beam-beam instabilities using a ma-
trix mapping technique. In the special case of an isolated coherent beam-beam resonance, a stability criterion
for coherent beam-beam resonances has been found in closed form.

Anintriguing particular concerning the effect of repeated beam-beam collisions on collider luminosity has been
derived explicitly. An addition of luminosity per kick (small though, of the order of the beam-beam parameter)
in the course of successive beam-beam collisions could be achieved.
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l. Introduction the Stanford Linear Accelerator Center (SLAC), re-
spectively. In the same year the electron-positron
collider AdA at the National Laboratory in Frascati

Charged particle beams in accelerators and storage and five years later in 1970 the first hadron col-
rings are subjected to external forces that are often lider Intersecting Storage Rings (ISR) at CERN be-
rapidly oscillating, such as conventional quadrupole came operational. Even in the initial stage of the
focusing forces, radio-frequency accelerating fields, operation of accelerators in the collision mode of
etc. In addition, collective self-consistent excita- the stored beams, it was realized that beam-beam
tion fields can also be rapidly oscillating. A typi- interaction significantly limits the luminosity - one
cal example is a ring collider device for the storage of the main parameters of modern colliders. At
of subsequently colliding beams, where the evo- the present time, it can be without hesitation stated
lution of each of the two beams is strongly influ- that beam-beam interaction represents one of the
enced by the electromagnetic forces generated by most complex problems in the physics of accelera-
the counter-propagating beam. The kick experi- tors and charged particle beams. Despite significant
enced by each beam is strictly localized only in a progress in understanding the relevant issues and
small region around the interaction point and is pe- underlying processes, there is still no comprehen-
riodic with a period of one revolution along the ma- sive picture that encompasses all the features and
chine circumference. physical details of beam-beam interaction.

The non-trivial problems and issues associated with

the now-common term beam-beam interaction are Active work on the development and construc-
quite longstanding. The first machines to start op- tion of charged particle colliders began simultane-
erating in collider mode in the distant 1965 were ously in the late 1950s in the laboratories of Fras-
the electron-electron colliders VEP-1 at the Institute cati (Italy), SLAC (USA) and the Institute of Nuclear
of Nuclear Physics (INP) in Novosibirsk and PSEC at Physics (former USSR). The first to operate was the
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electron-positron collider AdA, built under the di-
rection of the Austrian theoretician Bruno Touschek
in Frascati. However, the first results were pub-
lished a year later (1966) than the observations
of elastic scattering of electrons (1965) at the So-
viet VEP-1 (Opposing Electron Beams), created un-
der the direction of G. I. Budker and A. N. Skrin-
sky. A little later, colliding beams were obtained in
the PSEC (Princeton-Stanford Experiment Collider).
These first three colliders were test ones, demon-
strating the possibility of studying the physics of ele-
mentary particles. The first hadron collider was the
proton synchrotron ISR, launched in 1970 at CERN
with beam energy of 32 GeV. The only linear collider
in history is the SLC (Stanford Linear Collider), which
operated from 1988 to 1998.

Without claiming complete exhaustiveness, here we
shall try to trace the main and most important par-
ticulars and achievements in the theoretical de-
scription of beam-beam interaction. It is fair to
say that the progress in numerical simulation of
beam-beam interaction is significantly greater than
the achievements of the theoretical models pro-
posed so far. The important developments in this
direction remain outside our main goal here and
therefore we will not give them the necessary at-
tention in the subsequent exposition. Historically,
the first theoretical model of the beam-beam in-
teraction is the so-called weak-strong model, also
known as the incoherent beam-beam interaction, to
which a special workshop [1] has been dedicated.
In this model, it is assumed that one of the beams
is strong and rigid and does not undergo significant
changes (practically unmodified) in the collision pro-
cess, and its role is to act on the other beam (con-
sidered weak and mobile), the latter playing the role
of a dynamic probe and indicator of the interaction.
Over the years, a huge number of articles have been
published, which are dedicated to various analyt-
ical aspects, as well as to numerical simulation of
the weak-strong model of beam-beam interaction.
In hadron colliders, the natural damping mecha-
nism does not exist, which can lead to classical diffu-
sion along a network of intersecting stochastic lay-
ers (the so-called Arnold diffusion) characteristic for
nonlinear dynamical systems with many degrees of
freedom. This phenomenon was first described in
Ref. [2].

The realistic model reflecting the collective nature
of the interaction between the two moving in oppo-
site directions beams is called the strong-strong or
coherent beam-beam interaction model for short.
In this model, the evolution of the two beams oc-
curs synchronously, as the electromagnetic field
created by each beam is influencing and modify-
ing the other one at the interaction point. Based
on our awareness of the existing literature, the co-
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herent beam-beam interaction in one dimension
was first theoretically studied by Chao and Ruth [3]
by solving the linearized Vlasov-Poisson equations.
Since the pioneering work of Chao and Ruth, nu-
merous papers based on the self-consistent Vlasov
technique have been published, among which it is
necessary to note the article by Yokoya et al. [4]
and, at the first place, that by Alexahin [5]. In
addition to the above two articles, the literature
abounds with a whole host of interesting and im-
portant works [6, 7, 8, 9], all of which, for obvious
reasons, are impossible to mention, moreover this
is not our main goal here. Based on the macro-
scopic hydrodynamic approach the results regard-
ing the linear mode coupling, also known as the co-
herent beam-beam resonance [3] have been gen-
eralized in Ref. [10]. Unlike the standard technique
for solving the Vlasov-Poisson system of equations
in terms of action-angle variables used in all refer-
ences mentioned above, the approach used in Ref.
[11]is implemented in a "mixed" phase space (old
coordinates and new canonical momenta). In this
way, the form of the Poisson equation for the beam-
beam potential(s) in Cartesian coordinates is pre-
served, which is significantly simpler to handle an-
alytically on one hand, and more computationally
efficient on the other.

The local nature of beam-beam interaction is an ex-
cellent testbed for the application of the symplec-
tic mappings approach, which is unfortunately less
popular as compared to the Vlasov-Poisson tech-
nique [12, 13] at the present moment of time. A
new approach to beam-beam interaction in circu-
lar colliders, based on the symplectic twist map
method with subsequent regularization of the one-
turn beam-beam map, has been developed in Refs.
[14, 15]. Therein, a regularized symplectic beam-
beam map has been proposed, which correctly de-
scribes the long-term asymptotic behavior of the
original dynamical system. It has been shown that
the regularized map possesses an integral of mo-
tion that can be calculated in any desired order. The
invariant density in phase space (stationary distri-
bution function) has been constructed as a generic
function of the integral of motion and a coupled
system of nonlinear functional equations has been
obtained for the distributions of the two colliding
beams.

To study the coherent beam-beam instability, the
present work follows a similar strategy [16]. The dif-
ference as compared to Refs. [14, 15] is that instead
of tracking individual trajectories in phase space, a
statistical mechanics approach is applied via a dis-
tribution function of an ensemble of trajectories.
The Frobenius-Perron operator of the density (distri-
bution) function in phase space, sometimes called
the Transfer Operator of this function or the phase-
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space density propagator, provides a powerful tool
for studying the dynamics of recurrent iterations of
the distribution function itself. In other words, the
Frobenius-Perron operator provides a rule to deter-
mine how the evolution of phase-space densities
over repeated iterations of the one-turn map is ac-
complished.

The article is organized as follows. In the follow-
ing Section Il., we briefly discuss the Hamiltonian
formalism with an application to beam-beam inter-
action and the main tool for its description arising
from this formalism, namely the coupled system
of Vlasov-Poisson equations. Section lll. is devoted
to the description of the Frobenius-Perron opera-
tor method, as well as to an outline of some of
its main features and properties. The reduction of
the Frobenius-Perron operator in the non-resonant
case by the Renormalization Group method is per-
formed in Section IV., while technical details are
presented in B. Based on the Frobenius-Perron op-
erator, the problem of coherent beam-beam reso-
nances in one dimension is studied in detail in Sec-
tion V.. The influence of beam-beam collisions on
the collider luminosity is studied in Section VI.. Last
but not least, the conclusions and discussions of
the obtained results, as well as future perspectives
and possible developments are presented in Sec-
tion VII..

II. Hamiltonian Description

of Beam-Beam Interac-
tion

The two-dimensional model of coherent beam-
beam interaction in a plane transversal to the indi-
vidual particle orbits in each (k = 1,2) beam is de-
scribed by the Hamiltonian [17]

_ R 2 2 1 (k) .2 (k), 2
Ry,
+6,(0
;D( )Eskﬁik

Here, (z,ps,y,py) is the canonical conjugate pair
of transverse variables, R is the mean collider ra-
dius, Gg’“}, arethelinear machine focusing strengths
for each beam in the transverse directions and the
propagation of the latter is measured in terms of
the azimuth 6 adopted as the independent vari-
able. In addition, g, are the corresponding particle
charges, c is the speed of light in vacuum, and Ey
and f,j are the energy and the relative velocity of
the synchronous particle, respectively. The periodic
delta-function §,(#) multiplying the third term on
the right-hand-side of Equ. (1) reflects the locality of
the interaction between the two beams occurring in

(P3—k — CBekAsz—ry). (1)
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the vicinity of the interaction point. The electromag-
netic scalar ¢3_j and the longitudinal component
of the vector A,(3_j) potential describing the field
created by the opposing beam satisfy the following
equations

q3—kN3_ 03—k
€0

Vigs r=— : @)

V3 Asior) = —10G3—kN3— ik Js3—1),  (3)

0? 02
2 N R
Vi= Ox2 + oy?’

in the ultra-relativistic limit. Here ¢y and pg are
the electric permittivity and the magnetic perme-
ability of free space, respectively, Ny is the parti-
cle number density of each beam, gy, is the normal-
ized (to unity) beam density, and Jg is the beam
current in longitudinal direction. Since Jy3_) =
—cfs(3—k) 03—k, ONe obtains the obvious relation

ﬁs 3—k
Ay = ==L gy 4 (@)
Itis convenient to perform an appropriate scaling of

the beam-beam potential according to the relation

e NkBT,
o = e TkPik
47eg

Vi, (5)
and introduce the normalized canonical variables
T = q1v/ Bk, Pz = L(1?1 — a1q1), (6)
V Bk

with similar relations for the vertical canonical con-
jugate pair (y, py), indexed by 2. The quantities a-s
and f-s are the standard Twiss parameters, while
the starred 5* implies the corresponding Twiss pa-
rameter at the interaction point. Taking into ac-
count Equ. (4) - Equ. (6), the Hamiltonian (1) can be
cast in a normal form as

%(p% +43)

+6p(9))\krv3—k:~

Hy, = %(pfﬂﬁ) +

)

where x1 21, are the corresponding phase advances
and the "raised dot" w implies differentiation of the
corresponding variable w with respect to the inde-
pendent azimuthal variable 6. Moreover,

 RryZyZs kN3 kBi(5_r) 1+ BaBsz—r)
g AxYsk

b

(8)
is the so-called beam-beam parameter, where 7,
is the classical proton radius, Z; and Ay are the
charge state and the mass number of the particles

2
ﬁsk:
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in the k-th beam, respectively, and 4 is the cor-
responding Lorentz factor. The normalized beam-
beam potential V5_, satisfies the Poisson equation

0? 02
— k== | V3 = —4dmo3_
(aq% + K3—k aqg) 3—k 03—k,

Bla—rk)

9

R3— — .
T Biaw
For the sake of simplicity and clarity, we shall con-
sider in what follows the one-dimensional case in
one of the transversal degrees of freedom. The par-
ticle distribution function f% (g, p; ) of each beam is

a solution to the Vlasov equation

Ofi . Ofi O Ofi _
90 o T Taq op
while the normalized beam density is expressed as

(10)

oo

or(q; 0) = / dpfr(q, p; 0),

— 00

(an

The locality of the beam-beam interaction, or in
other words, the representation of the normal-
ized beam-beam potential of the opposing beam
as a thin electromagnetic element, suggests a sub-
stantial simplification of the problem. It will be
demonstrated in what follows that the beam-beam
coupling between the two colliding beams can be
treated to a certain extent exactly by means of an
elegant technique involving transfer maps.

The Frobenius-Perron
Operator for the Beam-
Beam Map

It is assumed that the general reader is not famil-
iar with the method of the Frobenius-Perron op-
erator. For the sake of self-consistency of the ex-
position, we follow closely Ref. [17], and briefly
dwell here on some of its basics and general prop-
erties. Consider a continuous multi-dimensional fi-
nite degree-of-freedom dynamical system (not nec-
essarily Hamiltonian) defined by a state vector x(t),
where ¢ denotes the independent (time) variable.
The evolution of the system is described by the set
of coupled first-order differential equations

dx

dt

where F(x, A; t) is a vector field and A is a set of ad-
ditional parameters. Next, define the distribution
function f(x;t) characterizing the statistical prop-
erties of the dynamical system and satisfying the Li-
ouville equation

of (x;t)
ot

=F(x, A1), (12)

+ V- [F(x,\t)f(x;t)] = 0. (13)
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Let us write the formal solution of the set of dy-
namic equations (12) as

x(t) =

where xg = X(t() is the initial condition at some
initial "time" ¢y. One can then verify in a straightfor-
ward manner that the solution of the Liouville equa-
tion (13) reads as

fx;t) = / dzd[x — X(z,A; ) fo(2),  (15)
where fy(x) is the initial distribution function.
For one-dimensional maps of the form
Tpt1 = F(xn, A), (16)

equation (15) can be written as

fra(0) = Ufol) = [ dedle — Pz V(o)
~ (17)
where U is the Frobenius-Perron operator. The de-
fined above Frobenius-Perron operator can be writ-
ten in a more explicit form as
a)‘)]

fu|F,
)= BT

where the index b runs over all the various branches
of the inverse map F~! and F implies differentia-
tion with respect to z. The generalization to multi-
dimensional maps is straightforward.

The iterative one-dimensional beam-beam map can
be derived by formally solving the Hamilton's equa-
tions of motion

Uf,(z (18)

—Xkq = Mdp(0)Vs_x(q:0),

(19)
where the "prime" denotes the partial derivative
with respect to the coordinate q. The result is
[14,15]

q = Xkp p=

Gnt1 = Qn cOSWi + [P — Ak Va_1(qn)] sinwg,

(20)

Pn+1 = —(Qn sinwy + [ n )\k‘/?:_k(Qn)] COS Wk,
21)
WE = 27Tl/k, (22)

where vy, is the betatron tune related to the k-th
beam, and wy, is the corresponding one-turn beta-
tron phase advance. It is worth emphasizing here
that the beam-beam map presented above is sym-
plectic, which can be easily verified by direct explicit
check of its Jacobian. According to Equ. (17) the
Frobenius-Perron operator can be written as

n+1
D (g,p) =

/dgdns{q —&er — [n— M V31 (&)] sk}

§{p+ sk — [n— MVE_u(©)]er } V(€ m), (23)
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where ¢, = coswy, and s; = sinwy, respectively.
In order to perform the integration, we manipulate
the allowed values of the arguments

q—&cr— =NV, (E)]sk =0, (24)
p+Esi— [n—MVi_i(O]ex =0, (29
of the delta-functions as follows. Multiplying Eq.

(24) by ¢, and Equ. (25) by s, and subtracting the
resulting equations, we obtain

qck —psk — &£ =0. (26)
Similarly, multiplying Equ. (24) by s; and Equ. (25)
by ¢k, and summing up the resulting equations, we
find

gk +pek —n+ M V5 (§) =0, (27
Rewriting Equ. (23) as
£ (g,p) = /dfdn5(q0k —psp — &)
Olasi + pex + MV3_x(&) —nl i (Em). 28)

the above integral becomes trivial to be taken, and
the final form of the Frobenius-Perron operator can
be expressed as

) = V@ P+ MV (@) @9)
where
coswg sinw
Q _RT q R k k ’
P P —sinwg CoSwyg

and the superscript T" implies matrix transposition.
Formally replacing the arguments z = (q,p)T by
Rz, we cast Equ. (29) in a more convenient for sub-
sequent use form

D (Rz) = £ [gp+ V(@] B

Introducing the formal small parameter € account-
ing for the perturbative character of the normalized
beam-beam interaction potential, and the action-
angle variables

q=V2Jcosa, p=—V2Jsina, (32)
with
1
J = §(q2 +p2)7 a = — arctan <p>7 (33)
q

we write the Frobenius-Perron operator repre-
sented by Equ. (31) in the form

lgnﬂ)(a T, J) = fé”) [4,p + eXeVa_i(q)]-
(34)
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Here is the place to pay particular attention to the
following; exactly the same considerations are valid
for the counter-circulating beam, for which a similar
Frobenius-Perron operator can be derived. Thus,
Equ. (34) and a similar one for the opposing beam
becomes the main starting point of our further anal-
ysis. Let us also note that Equ. (26) and Equ. (27) rep-
resent the components of the inverse vector func-
tion according to the expression on the right-hand
side of Equ. (18). Applying the latter taking into ac-
count the fact that the denominator in Equ. (18) is
unity (the beam-beam map is symplectic), one ar-
rives at the same result for the Frobenius-Perron
operator as above. Some additional mathemati-
cal properties of the Frobenius-Perron operator are
presented in A.

IV. Renormalization Group
Reduction of the
Frobenius-Perron Op-
erator

Equation (34) can be written in alternative form as

S (a4 w, J)

— exp [Ar(9,Va_ 1)l M (a, J), (35)

where for brevity the notations 9, = 9/9(q,p)
have been introduced. Since the beam-beam po-
tential V5_; does not depend on the momentum
variable p, we can write

L3 = (aqv?z—k)ap - (apVB—k)aq = (aqVS—k)apv

~ (36)
where L3_j, is the Liouvillian operator associated
with V5_j. Let us note that in action-angle variables
the Liouvillian operator acquires the form

Ls ) = (0.V3-)05 — (05V3_1)0a.  (37)

Thus, Equ. (35) becomes

fénﬂ)(a + wk, J) = exp {eAkig,k} f,in)(a, J).

(38)
Let us premise for the time being that the beam-
beam potential Vi (q) is a known function of the
coordinate displacement ¢q. Here we will not put
forward any further assumptions about the nature
of the beam-beam potential as a function of the
canonical variable g; the latter depends essentially
on the normalized density o(q). Itis straightforward
to check that the Fourier image of the beam-beam
potential Vi ()), defined as

1T~
Vk(q):% / dAVi(\)e, (39)
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oo

Vk(A) = / dqVi(q)e ™. (40)
possesses the following symmetry property

Vi) = Vi(= ), (41)

where the asterisk implies complex conjugation.
Note that Equ. (40) can be written as

oo

/ dqdp fi.(q, p)e™"

— 00

47

Vi(A) = 2

0o 2

4 ,
— )\—Z/dj/dafk(a, J)e iV cosa g9y
0 0

Using the Jacobi-Anger expansion [18, 19]

oo

PRELT Z imjm(z)eim897 (43)

m=—0oo

where 7,,(z) is the Bessel function of the first kind
of order m, we represent the beam-beam potential
in a Fourier series in the angle variable as follows

Via, J) = VOUI) + Vi (a, J)

= V,C(O)(J) +2 Z Vk(m)(J) cos (ma). (44)
m=1

The corresponding Fourier amplitudes are ex-
pressed in explicit form as

T
V,fo)(J)=§/dAVk(A)Jo(A\/ﬁ), (45)

szm)(J)=Z27/dA17k(A)Jm<A\/ﬁ). (46)

In obtaining the Fourier expansion given by
Equ. (44), the symmetry property Vk(_m)(J) =
V"™ (J) has been taken advantage of.

Since the Frobenius-Perron operator approachiis lit-
tle known in the field of statistical description of
nonlinear dynamical systems, it is worth devoting
some attention, aside from the main exposition,
to briefly acquainting the potential reader with its
main characteristics and properties. Details can be
found in B, where the case when both rotation fre-
quencies wy, are far from nonlinear resonances ex-
cited by the beam-beam potentials Vj, is consid-
ered. For completeness, the resonance structure
of the Frobenius-Perron operator can also be ana-
lyzed when one or both wy, are relatively close to
certain structural resonance(s) driven by the beam-
beam potentials. The interested reader is referred
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to Ref. [16] for details. It is instructive now to con-
sider the non-resonant case, for which Equ. (134)
for the renormalized amplitude of the distribution
function in the continuous limit can be written in the
form
OF), ~
—— = —wiOF]
on W k
£(0) o[ 12(0)2 z
+ )‘kLS—k + >‘k 2L3—k + Q3_104 | | Fr.  (47)
Here [compare with Equ. (98) and Equ. (99)]

(0 u u 0
LY, = —wf (D)0, Wi () = 0,V (),

(48)
is the nonlinear first-order incoherent tune-shift,
while [in analogy with Equ. (121)]

Qs (wk, J) = Z m cot <m;k)

%87 (Vg(Tk) 8, Véﬁj) 7 (49)

is the nonlinear second-order incoherent tune-shift.
Note that the operator Mgl)k defined by Equ. (137)
is neglected as providing a higher-order correction
to the incoherent tune-shift.

Equation (47) exhibits a very important and far-
reaching property - there exists an equilibrium so-
lution for the renormalized distribution function
F,EO)(J), which depends only on the action vari-
ables. Moreover, there exist a damping mechanism
acting on the fluctuation harmonics with respect to
the angle variables, such that the general solution
of the Fokker-Planck equation (47) rapidly relaxes
towards the invariant density distribution.

The relaxation rate to the invariant density distri-
bution depends on the first-order incoherent tune-
shift, and for this reason we shall now turn to its
calculation. Recalling that Vk(o)(J) is given by the
expression (45), and also that the Fourier image of
the beam-beam potential is represented in the form
of Equ. (42), we obtain

Y 4
Wi () = ~ 75 dqdpfs—k(q,p)

x / i;jl (Ax/ﬁ) cos(q\).  (50)
0

The second integral (with respect to \) in the above
expression is tabular [20] and can be taken in a
closed form as

d sin bx
= Tex)
z cos bz
0
1 | sin[narcsin (b/c)] 51)
T | cos [narcsin (b/c)] ’

©G-Labs 2025



S.l. Tzenov

for 0 < b < c. Thus, we have

(u) 4
wa o (J) =——== d
3—k( ) \/ﬁ p
—00
V27
. q
X dqfs_r(q,p)cos |arcsin [ — | |. (52)
—V27
Taking into account the equilibrium distribution
function
2, 2
(0) p°+q
= — 53
S—k(Q7p) 27T0§_k exp ( 2U§_k )7 ( )

as well as the integral representation of the modi-
fied Bessel function Z,,(z) (see e.g. Ref. [19])

s

1 i
To(z) = — /dTeZ €57 cos (nT), (54)
T
0
we obtain
w V2T
Wzgjk(J) =75
3—k
J J
m(zm) 2 (7))
205, 205,
X e —L (55)
*P 202 )"

A similar expression for the incoherent beam-beam
tune-shift has been previously obtained in Ref. [15].

-wa

2 4 6 8 10
Figure 1: Dependence of the first-order incoherent tune

shift 7wz<;i)ko'3_k- as a function of the action
variable J/o3_, given by Equ. (55).

It is sometimes useful in practice to evaluate the av-
eraged incoherent tune shift

oo

(ws_p) = / dJ £ (D™, ().
0

(56)
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Taking into account the expression [20]

oo

/dze*men(cx) = 5
/ \/pz — 2 (p + \/pz _ 02)

(57)

Cn

i

for p > ¢, we obtain

1 44 2V/2
<W3—k> - — .
205 /T 3+ 2¢/2

The dependence of the first-order incoherent tune
shift as a function of the action variable is shown
in Fig. (1). For typical characteristic parameters of
the magnetic structure for the NICA collider at the
Joint Institute for Nuclear Research (JINR) in Dubna
and the number of particles in each of the beams
Ni ~ 4 x 109 the incoherent tune shift is of the
order of A\g{w3_x) ~ 0.016.

(58)

Linearized Frobenius-
Perron Operator and
Stability of Coherent
Beam-Beam Resonances

V.

In the preceding Section, it was shown that the equi-
librium distribution function is an arbitrary function
depending solely on the action variables. The an-
swer to the question of what exactly and of what
kind the invariant phase-space density should be
anyway, was not given in an unambiguous form.
To answer this question, a better strategy consists
in the following; suppose that it is possible to con-
struct integral(s) of motion [generalized action vari-
able(s)] describing the dynamics of the beam-beam
map (20) - (21). Then, the equilibrium distribution
functions G » for the two beams satisfy coupled
functional equations that can in principle be solved
at least perturbatively. Such approach has been de-
veloped and followed in Ref. [15]. In the present
work we are not interested in the static equilibrium
behavior of the beam distributions, but rather in the
temporal evolution of the dynamic motions of the
beam distributions around the equilibrium distribu-
tions G, that is

f @ 0) = F @ D)+ Ge(d). 59)
Substituting Equ. (59) into Equ. (38) and retaining
only the first order terms in ]-',i"), we obtain the lin-
earized Frobenius-Perron operator

]—“,gnH)(a +wk,J) = }',g") (a — )\kwéu_)k, J)

Ak [6G,V§’j)k (a — M, J)} G(J), (60)

©G-Labs 2025



S.l. Tzenov

for k = 1,2, where G/, denotes derivative with re-
spect to the action variable J. In addition

2 d>‘ 1)\\/7 Jcosa
)\2

—00

X /da/djlfén)(a/, J/)efi)\\/QJ’ cosa’y (61)

Vlin) (a7 J) =

are the first-order beam-beam potentials calculated
with the perturbed distribution function ]-',i") (a,J).
In order to solve the linear recurrence equation
(60), we note that the linearized distribution func-
tion F\™ (a, J) may be represented as

Z gkl) JTL zla

l=—o00

F (a, ) (62)

To this end, g,(f)(J, n) are yet unknown Fourier har-

monics, which, as will become clear from the sub-
sequent exposition, determine the linear stability of
the linearized Frobenius-Perron operator.
Assuming the equilibrium distribution function Gy,
to be of the form (53), for small beam sizes oy, the
following formal trick

J J’
Gk(J)Gg_k(J ) C;.C exp < — 3 )
Ok  O3-k
J’ J 2V JIJ
= Cj exp -+ = - 5
-k Ok O}
2
J’)
X exp
~ /T ()G (' J’)

is valid. The above expression can be symmetrized
with respect to the sizes of both beams and as a re-
sult we finally obtain

Gr(J)G3-1(J")
= EﬁGk(J)Gs—k(J/)(;(\/j - ﬁ)7

where @ = (01 + 02)/2. Next, we substitute the
ansatz (62) into Equ. (61). To perform the integral
entering Equ. (61), we use the Jacobi-Anger identity
(43), as well as the well-known relation between the
Bessel functions [19]

Tar () + T () = 2 3u(2).

Equating similar harmonics with respect to the an-
gle variable (proportional to e?%) in the linearized
Frobenius-Perron operator (60), we obtain

(63)

(64)

—il(w w®
Grgl(n+1) =e (i) g {g;(f)(n)

20\ ZF G-t Z Mimgi™).(n )1. (65)

m=—0o0
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The infinite matrix M can be expressed as

32il _ B

M, = 4 [EFm?=1][a=m)? 1]’ if | +m = even,
Oa Ifl +m = Odd7

(66)

where use has been made of the tabular integral
[20]

2 (?”L*m)ﬂ'.

/ %jm(cz)jn(cz) = sin 5
0

m(n? —m2)

(67)
If g,(cl)(n) does not depend on the action variable,
Eg. (65) can be further simplified by integrating
away the action variable from its both sides. This
approximation however, is valid if and only if the
perturbed betatron tunes wy + /\kw:(;i)k do not de-
pend on the action J, which obviously is not the
case. The dependence on the action variable leads
to an effect similar to Landau damping, well-known
in plasma physics, which we shall neglect in what
follows. Another justification for the validity of
such an approximation is the rapid decrease of the
incoherent tune shift as a functional dependence
on the action variable J clearly visible in Fig. (1).
Thus, the first-order incoherent tune shift can be
approximately replaced by its average value given
by Equ. (58). With all of the above in hand, Equ. (65)
can be cast in the form of a single-turn map

(z)(n+ 1) = o~ Wi+ Ak (ws—k))
x lgé”(n) + X Z Mg ()|, (68)
m=-—00
where
2
~ go
= \[A" s Y=oltol (69

Consider now an isolated coherent beam-beam res-
onance of the form
n1W1 + nowe = 27s + A, (70)
where n1, no and s are integers, the quantity A is
the resonance detuning, and
Wi = wi, + Ar{ws—x), 71)
are the perturbed betatron tunes for each beam. To
study the stability of the isolated coherent beam-
beam resonance of the form (70), we retain only

the +n; and the £ny elements in the infinite ma-
trix M, the transformation matrix of the coupled
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Figure 2: Stability diagram (the shaded region) of a co-
herent beam-beam coupling resonance of the
form given by Equ. (70), where n1 = ng =
1. The plot is presented in the fractional part
of the tune (v1, v2)-space. For demonstrative-
ness, the beam-beam parameter is taken to be
Ak ~ 4.7712 x 107°.

map equations (68) can be expressed as

e 0 e~ e
0 e et —qqeitt
age” W2 qpe W2 e 2 0 7
—pet¥?  —qget¥2 0 el
(72)
where
VY = Ny, ar = MM,

~n
ay = A — My, (73)
ny

The transition matrix (72) contains all the informa-
tion about the stability of our system in the process
of successive beam-beam kicks, therefore it is im-
perative to investigate its eigenvalues. The latter are
the roots of the secular equation

(MQ —2ucosy + 1) (/QL2 — 2ucos s + 1)
+20[1042

x[cos (11 — 1) — cos (11 + 1bo)]u? = 0.

The above equation (74) can be converted into a
more convenient form as follows

(MZ —2c1p+ 1) (MQ — 2¢cop + 1) =0,

where

(74)

(75)

1
Cl2 = 5(‘308 Y1 + cos 1)

:I:% \/(COS 1 — cos wg)z — 4Asin sinis, (76)
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A=A 2 M2 (77)
n1

The motion is stable if the coefficients c; » given by
Eq. (76) simultaneously satisfy the conditions

—1<c <1, (78)

Vo 0.0rp

-0.5

-1.0¢] . \ . ]

V1

Figure 3: Stability diagram (the shaded region) of a co-
herent nonlinear beam-beam resonance of the
form given by Equ. (70), where ny = 1, ne =
3. The plot is presented in the fractional part
of the tune (v1, v2)-space. For demonstrative-
ness, the beam-beam parameter is taken to be
e ~ 4.7712 x 107°,

Figure 2 shows the stability region (shaded area)
of the linear beam-beam coupling resonance w; +
wy = 2ms + A in the space of the fractional part of
the shifted betatron tunes v; and v, [compare with
Equ. (71)]. For a better clarity in the visualization of
the structure and shape of the islands of instability,
anincreased value of the beam-beam parameter A\
corresponding to N, ~ 4x10'% number of particles
in each beam has been taken.

Note that according to Equ. (66) only nonlinear
beam-beam resonances of even order are possi-
ble. Furthermore, the elements of the infinite ma-
trix My, decrease quite rapidly with the resonance
order, which leads to a drastic reduction of the res-
onant driving term. For comparison, Fig. (3) shows
the stability diagram in the case of a fourth-order
coherent nonlinear beam-beam resonance w; +
3ws = 2ms + A. The instability region consists of
narrow resonance stopbands together with islands
of instability scattered around them. There is a suf-
ficiently wide band of stability, which greatly facili-
tates the felicitous selection of the operating beta-
tron tunes. In this sense, nonlinear coherent beam-
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vo 0.0F

10k AN 1 |

0.0

V1

Figure 4: Stability diagram (the shaded region) of a co-
herent beam-beam coupling resonance of the
form given by Equ. (70), where n; = no = 1.
The plot is presented in the fractional part of
the tune (v1,v2)-space. The beam-beam pa-
rameter is taken to be A\, ~ 4.7712 x 1079,
which corresponds to the realistic case, where
Ni ~ 4 x 10°.

beam resonances are significantly less dangerous
than the linear coupling resonance.

Finally, Fig. (4) presents the realistic situation show-
ing the stability diagram of the linear coherent
beam-beam resonance at a value of the beam-
beam parameter A\, ~ 4.7712 x 10~% correspond-
ing to Nx ~ 4 x 10° number of particles in each
beam. A central narrow resonance stopband and
scattered satellite narrow stopbands and small is-
lands of instability are clearly visible.

Figures 2 - 4 refer to typical characteristic param-
eters of the NICA collider magnetic and interac-
tion point structure being under construction at the
Joint Institute for Nuclear Research (JINR) for fully
stripped gold atoms 197 Au"t,

Beam-Beam Collisions Ef-
fect on Collider Luminos-

ity

In modern colliders, in addition to the energy of
the circulating charged particle beams, the number
of beneficial interactions (events) in the course of
their successive collisions at the interaction point(s)
is also of particular importance. The quantity that
measures the ability of a particle accelerator to pro-
duce the required number of interactions is called
the luminosity. In the case of head-on collisions, the

VI.
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luminosity is proportional to the overlap integral of
the colliding beams’ density distribution functions
[21, 22], and is given by the expression

L =kL, Kk = 2N1NoF Ny, (79)
where F is the revolution frequency and N is the
number of bunches in one beam. The quantity L is
the overlap integral

oo

L= / dgo1(g)02(9),

—00

(80)

where the normalized beam density g (¢) of each
beam (k = 1,2) is given by Equ. (11).

It is interesting and important to estimate the lu-
minosity variation per unit collision given an estab-
lished equilibrium distribution. For this purpose
it is necessary to represent the expansion of the
Frobenius-Perron operator (29) about the equilib-
rium distribution G(q, p) up to first order in terms
of the small formal (beam-beam) parameter as

fr(a,p) = Gr(q,p) + Ae[0gV3—1(Q)]0pGr(q, p)-
(81)
Note that the orthogonal transformation (30) from
the old (g,p) canonical variables to the new ones
(Q, P) does not change the overall appearance of
the quadratic form entering the equilibrium distri-
bution function (53). The next step is to calculate
the perturbed beam density in configuration space

01(@) = 00.(a) + M / Apl2oVa_1(Q))2r G (g, p).

(82)
Integration by parts and utilization of the fact
that the beam-beam potential satisfies the Poisson
equation (9), yields

0k(q) = 00,1(q) — 2T\ sin 2wy,

oo

X /dPGk(qvp)Qo,s—k(qCOStdk*:DSink)- (83)

—0o0
The well-known Gaussian integral

(oo}

/ dz exp [— (a:c2 + bx + c)}

7Te b2 .
= — ex JR—
V a P\ 1 ’

can be used to perform the integral in Equ. (83). The
resultis

(84)

or(q) = 00,k(q) — Aor(q), (85)
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where

A Sin 2wy,

Aor(q) p— Y

2 2 2,22
q Ci 05k
X exp by PR .
O3k \0j k
Here, as before s, = sinw;, and ¢, = cos wy, while

the quantities Sx and Ci, are given by the expres-
sions

(86)

2 2.2 2 2 2.2 2
Sk = O—ksk +0—3—k7 Ck = O'kck +O—3—k" (87)

Finally, the luminosity variation per unit collision
can be expressed as

AL = AL, + ALy, (88)
where
AL, = — / dqeo,2(¢)Ao1(q), (89)

and a similar expression for ALy, in which the in-
dices "1"and "2" on the right-hand side swap places.
More explicitly

AL — Ak sin 2wy, C?  oisic? -1/
k= O’kSk 0’]% Slg
(90)

There are several intriguing features in Equ. (90)
striking at first glance that are worth commenting
on briefly here. First, the luminosity variation per
unit collision is proportional to the beam-beam pa-
rameter A\, which is to be expected. An even more
important peculiarity is the dependence of AL on
the phase advance per one revolution wy. This es-
sentially means that the betatron tunes v, can be
chosen such that sin 2wy, < 0, which directly im-
plies 1/4 < Frac(vy) < 1/2, where Frac(vy) be-
ing the fractional part of the betatron tune. In this
way an addition of luminosity per kick (although
of the order of the beam-beam parameter) in the
course of successive beam-beam collisions could be
achieved.

VIl. Concluding Remarks

As already mentioned, the beam-beam phe-
nomenon is a very difficult subject, which includes
many different effects, subdivided on the one hand
into incoherent and coherent effects, and on the
other hand into equilibrium and non-equilibrium
ones. The equilibrium ones include the process of
establishing an equilibrium phase-space density
distribution, and among the non-equilibrium
processes, the nonlinear oscillations and reso-
nance phenomena with possible transition to
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stochasticity should be mentioned. There also
exist quasi-equilibrium processes induced by the
beam-beam force, which qualify as bifurcation
phenomena leading to the highly unfavorable
effect, also known as the "flip-flop" effect [11].

In the present work, a detailed analysis of the es-
tablishment of an equilibrium density distribution
in phase space and the relaxation towards the lat-
ter has been studied analytically. Furthermore, the
behavior of the perturbed from equilibrium distri-
bution function with respect to the coherent sta-
bility of the colliding beams, is carried out in linear
approximation. Although we do not claim that the
latter is the only important effect that arises in the
beam-beam interaction, we suggest that coherent
effects are indeed one of the most dominant beam-
beam features. Unlike most publications devoted
to the application of the self-consistent method of
the nonlinear Vlasov-Poisson system to the study
of beam-beam interaction, in this paper we have
chosen an alternative strategy using the elegant ap-
proach of the Frobenius-Perron operator for sym-
plectic twist maps.

The Renormalization Group (RG) method has been
applied to study the stochastic properties of the
Frobenius-Perron operator for symplectic twist
maps of the most general type and in particular for
the beam-beam twist map. After a brief introduc-
tion and derivation of the Frobenius-Perron oper-
ator for a beam-beam symplectic map with rota-
tion, the case where the unperturbed rotation fre-
quency (unperturbed betatron tune) of the map is
far from the structural resonances driven by the
beam-beam kick perturbation has been analyzed
in detail. It has been shown that up to second or-
der in the beam-beam perturbation kick, the renor-
malized map propagator (equivalently, the renor-
malized Frobenius-Perron operator) with nonlinear

stabilization f;co) # 0 ) describes a random walk

of the angle variable. This in turn implies two im-
portant consequences: first, there exists an equilib-
rium distribution depending only on the action vari-
able and second, the relaxation rate to this invariant
distribution depends on the nonlinear (incoherent)
tune shift and takes place only with respect to the
angle variable. Further, the incoherent beam-beam
tune shift as a function of the action variable has
been calculated explicitly.

The linearized Frobenius-Perron operator for each
of the two beams actually implies a discrete form
of the linearized Vlasov equations. This essentially
is equivalent to and signifies a new method for cal-
culating coherent beam-beam instabilities using a
matrix mapping technique. It offers a very simple
description of the coherent beam-beam interaction
and allows straightforward numerical calculations.
In particular, the handling of the infinite system of
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linear map equations (as far as this is practically
possible) allows the simultaneous treatment of all
nonlinear resonances, taking into account the cou-
pling between them. In the special case of an iso-
lated coherent beam-beam resonance, a stability
criterion for coherent beam-beam resonances has
been found in closed form.

An intriguing particular concerning the effect of in-
dividual successive beam-beam collisions on col-
lider luminosity has been found explicitly. An
addition of luminosity per kick (small though, of
the order of the beam-beam parameter) in the
course of successive beam-beam collisions could be
achieved.

As for other merits of the method described here
that have remained hidden in the main body of the
article, it is worth noting two additional ones as
follows. The Frobenius-Perron operator approach
can be generalized without much difficulty to sys-
tems with more than one degree of freedom, so
as to cover both transverse directions and, if nec-
essary, the longitudinal degree of freedom as well.
Combined with an adequate Poisson solver, the
Frobenius-Perron operator, especially in its Carte-
sian coordinate and momentum representation,
can represent a tool of particular value for the nu-
merical simulation of the beam-beam interaction.
Its numerical implementation may provide a won-
derful opportunity not only to track the orbits of in-
dividual particles, but also to follow and describe
the dynamic evolution of an entire statistical distri-
bution of an ensemble of particles. Such general-
izations can turn the Frobenius-Perron operator ap-
proach into an indispensable tool in studying beam-
beam effects in asymmetric lepton-hadron colliders
[23].

VIIl. Acknowledgements

It is a pleasure to express my gratitude to Prof. Igor
Meshkov for his careful reading of the manuscript
and for his useful comments and suggestions.
Fruitful discussions on topics touched upon in the
present article with Dr. Alexander Philippov are also
gratefully acknowledged.

IX. References

[11 M. Month and J.C. Herrera, editors, Non-
linear Dynamics and the Beam-Beam Interaction.
AIP Conference Proceedings, No. 57, (1980).

[2] Boris V. Chirikov, “Some estimates of the
weak instability for colliding proton beams,”
INP Preprint 249, vol. in Russian, p. 12 pages,
1968.

Vol. 6, Issue 1

261

J. Technol. Space Plasmas, Vol. 6, Issue 1 (2025)

(3]

(4]

(5]

(6]

[7]

(8]

[9]

[10]

(111

[12]

[13]

AW. Chao and R.D. Ruth, “Coherent
beam-beam instability in colliding-beam stor-
age rings,” Part Accel, vol. 16, pp. 201-216,
1985.

Kaoru Yokoya and Haruyo Koiso, “Tune shift
of coherent beam-beam oscillations,” Part Ac-
cel, vol. 27, pp. 181-186, 1990.

Yu. Alexahin, “A study of the coherent
beam-beam effect in the framework of the
vlasov perturbation theory,” Nucl. Instrum.
Methods Phys. Res. A: Accel. Spectrom. Detect. As-
soc. Equip.,vol. 480, no. 2-3, pp. 253-288, 2002.

Pavel Zenkevich and Kaoru Yokoya, “Landau
damping in coherent beam-beam oscillations,”
Part Accel, vol. 40, pp. 229-241, 1993.

D.V. Pestrikov, “Landau anti-damping of the
coherent beam-beam instability,” Nucl. In-
strum. Methods Phys. Res. A: Accel. Spectrom. De-
tect. Assoc. Equip., vol. 588, no. 3, pp. 336-346,
2008.

Kohji Hirata, “Coherent betatron oscillation
modes due to beam-beam interaction,” Nucl.
Instrum. Methods Phys. Res. A: Accel. Spectrom.
Detect. Assoc. Equip., vol. 269, no. 1, pp. 7-22,
1988.

D.V. Pestrikov, “Collective beam-beam insta-
bility for finite bunch length,” Part Accel, vol. 41,
pp. 203-220, 1993.

S.I. Tzenov and R.C. Davidson, “Macro-
scopic fluid approach to the coherent beam-
beam interaction,” Proceedings of IEEE Particle
Accelerator Conference (PAC 2001), 18-22 June
2001. Chicago, IL, United States, vol. 0106181,
pp. 2078-2080, 2001.

Stephan I. Tzenov and Ronald C. Davidson,
“Hamiltonian formalism for solving the viasov-
poisson equations and its applications to pe-
riodic focusing systems and coherent beam-
beam interaction,” Physical Review Special Top-
ics - Accelerators and Beams, vol. 5, p. 021001,
2002.

Alex J. Dragt, “Transfer map approach to the
beam-beam interaction,” In Nonlinear Dynam-
ics and the Beam-Beam Interaction, M. Month
and.C. Herrera, editors, AIP Conference Proceed-
ings, vol. 57, pp. 143-157, 1980.

K. Hirata, H.W. Moshammer and F.
Ruggiero, “A symplectic beam-beam interac-
tion with energy change,” Part Accel, vol. 40,
pp. 205-228, 1993.

©G-Labs 2025



S.l. Tzenov

[14] Stephan I. Tzenov, “Renormalization Group
Approach to the Beam-Beam Interaction in
Circular Colliders,” Proceedings of EPAC 2002,
Paris, France, pp. 1422-1424, 2002.

[15] Stephan I. Tzenov, “Renormalization Group
Approach to the Beam-Beam Interaction

in Circular Colliders,” arXiv:physics/0106101,

p. 12 pages. , 2001.
[16] Stephan 1. Tzenov, “Stochastic Proper-
ties of the Frobenius-Perron Operator,”

arXiv:nlin/0606003, p. 14 pages. , 2006.

[17] Stephan I. Tzenov, Contemporary Accelerator
Physics. World Scientific, Singapore, (2004).
[18] 1.S. Gradshteyn and .M. Ryzhik, Table of In-
tegrals, Series and Products. Academic Press,
New York, (1965).

[19] M. Abramowitz and I[.A. Stegun editors,
Handbook of Mathematical Functions. Wiley,
New York, (1984).

[20] A.P. Prudnikov, Yu.A. Brychkov and O.L
Marichev, Integrals and Series, Vol. 2: Special
Functions. Gordon and Breach Science Publish-
ers, New York, (1986).

[21] I.N. Meshkov, “Luminosity of an ion collider,”
Phys Part Nuclei, vol. 50, no. 6, pp. 663-682,
2019.

[22] W. Herr and B. Muratori, “Concept of lumi-
nosity,” CAS - CERN Accelerator School: Interme-
diate Accelerator Physics, vol. CERN-2006-002,
pp. 361-378, 2006.

[23] Ming Xuan Chang, Jian Cheng Yang, Lei
Wang, Jie Liu, He Zhao, Guo Dong Shen,
Hang Ren, Yun Zhe Gao, Qi Yu Kong,
Fu Ma, and Min Xiang Li, “Asymmetric
beam-beam effect study in a highly polarized
electron-ion collider,” Phys Rev Accel Beams,
vol. 26, pp. 011001(1)-011001(13), 2023.

[24] George B. Arfken and Hans J. Weber, Math-
ematical Methods for Physicists. Elsevier Aca-

demic Press, Amsterdam, (2005).

[25] S. Goto, Y. Matsutomi and K. Nozaki, “Lie-
group approach to perturbative renormaliza-
tion group method,” Prog Theor Phys, vol. 102,
no. 3, pp. 471-497, 1999.

[26] S. Goto and K. Nozaki, “Regularized renor-
malization group reduction of symplectic
maps,” J Phys Soc Jpn, vol. 70, no. 1, pp. 49-54,
2001.

Vol. 6, Issue 1

262

J. Technol. Space Plasmas, Vol. 6, Issue 1 (2025)

X. Appendix

A  Some Properties and Ad-

joint of the Frobenius-
Perron Operator

Combining Egs. (29) and (30) the Frobenius-Perron
operator (18) for the symplectic beam-beam twist
map can be represented in a compact form as fol-
lows

Uy, = R(—wr) exp {\k[0,Va—x(q)]0p}, (1)

where 7A2(a) denotes the rotation of the canonical
coordinates in phase space by an angle «, specified
by the orthogonal matrix (30).

First, let us establish one of the most important
properties of the Frobenius-Perron operator con-
cerning the conservation of phase space volume.
Consider the following integral

/ dgdpUy, f (¢, p)

- / dgdpfi[Q. P+ NV (@] (©2)

Replacing the integration variables (¢,p) —
(Q, P) on the right-hand side of the above equation
and taking into account the fact that dgdp = dQdP
under orthogonal transformation, we rewrite the
right-hand side as

5QV3 k(@)™ OF fr(Q, P)

/ dQdP Z

m()

- / dQAPfi(Q. P) = Vps. (93)

In the left-hand side of the above equation, succes-
sive integration by parts has been performed and
the independence of the beam-beam potential on
the momentum variable P has been taken into ac-
count.

The operator IAJl adjoint to the Frobenius-Perron
operator Uy, acting in phase space is defined by [24]

/ dqdpgi (g, p) Uy fi(q,p) = / dqdpfi (g, p)Ul gk (g, p).
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We transform the left-hand side of Eq (94) as follows
/ dqdpg (g, p) U fr(q, p)
— [ dadpgu(a.p) exp (nlooVa-1(Q)10r)

<(Q.P) = [ dQUPR(1)n(Q. P)
X exp { A\ [0g V31 (Q)]0p} fr(Q, P)
- /dePfk(Q,P) exp {—Ax[0gV3-1(Q)]0p }

~

R(wk)gr(Q, P). (94)

From all of the above, it follows that the adjoint op-

erator can be written in the form
UJ, = exp {~ [0, Va—r(0)]0p} R(wr).  (95)

The adjoint operator to the Frobenius-Perron oper-
ator is also known as the Koopman operator.

B Derivation of the Am-
plitude Equation for a
Generic Potential. Non-

resonant Case

To be as general as possible, consider an arbitrary
potential U(a, J) written in angle-action variables
as

Ula,J) =Wo(J) 4+ V(a,J). (96)

Respectively, the Liouvillian operator can be written
as

ﬁU = f,o + ﬁ, (97)
where
Lo = ~wu())ds, L= (0.V)d; —(8;V)0a,
(98)
and
wu(J) = 05 V. (99)

The Frobenius-Perron operator, which will be the
subject of renormalization group reduction in this
Appendix can be written as

Fasr(a+w, J) = exp (eiy)fn(a, J).  (100)

In what follows, we adhere closely to Ref. [16].
Initially, we consider the case, where the basic ro-
tation frequency w is away from nonlinear reso-
nances driven by the potential V. Following the
standard procedure of the renormalization group
method [17], we seek a solution to equation (100)
by naive perturbation expansion

oo

fula, J) =¥ (a, ),

k=0

(101)
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where the unknown functions f,gk) (a, J) should be
determined order by order.

Ba) Calculation of Secular Terms

1. The zero-order equation

Fa+w, )= fO%,T),  (102)

possesses the obvious solution

70 (a, J) = exp (—nwdy ) F(a, J) = F(an, J),
(103)
where a,, = a —nw. To this end F'(a, J) is a generic
function of its arguments, which will be the subject
of the renormalization group reduction in the se-
quel.

2. The first-order equation can be written as fol-
lows
) _ () (T LT

fih(a+w,0) = (@, ) = (Lo + L) F(a, J).

(104)
Note that since the above equation is linear, the
right-hand side will give rise to two kinds of terms
in the corresponding solution, one of them secu-
lar (proportional to the discrete "time" n), while the
other one is regular, containing oscillation harmon-
ics of the rotation frequency w and the angle vari-
able a. For this purpose, let us represent the solu-
tion of Eq. (104) as follows

FD(a,J) = ¢n(a, J) + Pnla, J). (105)

The first term (which will turn out to be secular) sat-
isfies the equation

bni1(a+w,J) = ¢n(a,J) = LoF(an, J). (106)

Itis straightforward to verify that the solution of the
above equation is

dn(a,J) = nLoF(an,J), (107)
The second term in the representation (105) satis-
fies the equation

Vnir(a+w,J) — Ppla, J) = LF(an, J). (108)

Since the angle-dependent part of potential
V(a,J), the arbitrary function F(a,J) and the
sought-for function 4, (a,J) are periodic in the
angle variable a, we can represent them as a
Fourier series

Via,J) =Y Vm(J)e™,
m#0

F(a,J) =) Fu(J)e™,

(109)

(110)
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(111)

=GP (et
k

We substitute the above expansions into both sides
of Equ. (108) and after equating similar harmonics,
we obtain

G;n+1)eikw o GEC")
= [imVinFy_,, — i(k — m)V;p, Fi ]

—i(k—m)nw'

xe (112)

Here, the primes indicate differentiation with re-
spect to the action variable J. It is straightforward
to verify that the solution of equation (112) has the
form

e—imw/Z
; 2isin (mw/2)
Z(k‘ — m)V,;le_m]

—i(k—m)nw.

G =

X [imVi Fly_p, —

Xe (113)

Substituting back expression (113) into the expan-
sion (111) for the function v, and rearranging
terms, we obtain

im(a—w/2)

€
¥n = ; % sin (mw)2)

} is(a—nw) )

X [imV,, Fl —isV, Fsle (114)
The expression (114) for v, can be converted to a
closed form such that the first-order solution to the
first-order equation (104) reads as
D (a,J) = (nf,o + EM)F(an, J),  (115)

where
Ly = (0aV)0s —(05Ve)0a-

Furthermore, the potential V,, is defined according
to the expression

(116)

Vw(a,J):V1<a—%,J>, 117)

Vm J eima
> (/)

J) = —
Vi(a, J) m¢02isin(mw/2)

(118)
3. The second-order equation is
Ih(atw, )= 12 (a, )
= (Lo + L)1V (a, )
1/~ N2
+§<L0+L> Flan, J). (119)

Since we are interested in the secular solution of
Equ. (119), we retain on its right-hand side only
terms that would yield a secular contribution. Thus,
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the second-order equation giving rise to a secular
solution can be written as

fn+1( +w7J) - fr(LZ)(aa J)
{(n + 2>L(2) +nLLy + Qw, J)aa}
xF(ap, J).

(120)

where

Z mcot(

Note that the last operator Q(w, J)d, on the right-
hand side of Equ. (120) is the angle-independent
part of the sum LL,, + L2/2.

The first and last terms on the right-hand side of
Equ. (120) can be treated in a way analogous to the
treatment of Equ. (106). Consider the solution of the
equation

)aJ(V 05Vim). (121)

U, (a,J) = nLLoF(ay, J).

(122)
Using the representations (110) and (111), we can
write the solution of the above equation as

Z g(")

It can be verified by direct substitution that the func-
tions g,i") (J) are given by the expression

Uyp(a4w,J)—

zk:a

U, (a,J) (123)

G\ =37 (nApn + Bim)e”Emmne - (124)
where
efz'mw/2
A m = 5. - 7 JaN
¥ 2isin (mw/2)
X [imV, Wi _, — i(k — m)Vy,Wi_p |,  (125)
1
Bim = ———5———
F 4sin? (mw/2)
X [imV Wi _p, — i(k — m)Ve, Wi |, (126)

and the new function W (a, J) = LoF(a, J) have
been introduced. Based on the obvious parallel be-
tween Equ. (123) and Equ. (114), for the secular so-
lution of the second-order equation (120) we obtain

2 o A~ ~
120, J) = | 5 L8 + nEuLo + nQ(w, )2,
xF(ap,J)(127)
Bb) Derivation of the Amplitude Equa-

tion

To remove secular terms (proportional to n and n?)
in the first-order (115) and second-order (127) so-
lutions, we define a renormalization group trans-
formation F(a,J) — F(a,J;n) by collecting all
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terms proportional to F'(a,, J)

Fl(ay, J;n)
A~ 2/\
= {1 + enLg + €2 <n2L(2) + n98a>}

xF(an,J).  (128)
Solving perturbatively the above equation for
F(ay,J) interms of F(a,, J;n), we obtain the fol-
lowing

F(an,J) = (1 —enf;o—f—...)ﬁ(an,J;n). (129)

Sticking closely to Refs. [17, 25, 26] we define a dis-
crete version of the renormalization group ampli-
tude equation by considering the difference

F(ap,J;n+1) — F(an, J;n)
_ {eio + €2 Kn + ;)ig + Qaa] }F(am J)(130)

Substituting the expression for F'(a,, J) in terms of

F(ay, J;n) from Equ. (129), we can eliminate secu-
lar terms up to O(€?). The result is as follows

F(an, J;n+1) — F(an, J;n)

|:€f40 +é2 (;ﬁg + 93(1)] F(an, J;n).

(131)

Equation (131) is the sought-for renormalization
group amplitude equation. It describes the evo-
lution of the distribution function on slower time
scales in addition to the fast regular oscillations with
the fundamental rotation frequency w.
An important remark is in order at this point. Note
that once the renormalization transformation has
been performed, the second term (which is propor-
tional to n and, therefore, secular) in the second or-
der solution (127) is eliminated automatically. To
see this, combine it with the second (non-secular)
term in the first-order solution (115). Thus, we ob-
tain
eZwF + e2n2w£0F
= €L, (1 — enio)ﬁ(n)
+EnLy,LoF(n) = eL, F(n). (132)

To first order in the perturbation parameter € the
renormalized solution to Equ. (100) can be written
as

Fala, J) = (1 + eZw)ﬁ(an, Jin),  (133)

where the renormalized amplitude F(a,,, J;n) sat-
isfies the renormalization group amplitude equa-

Vol. 6, Issue 1

265

J. Technol. Space Plasmas, Vol. 6, Issue 1 (2025)

tion (131). In the continuous limit Equ. (131) ac-
quires the form

OF (an, J;n)
on

|:€i0 + €2 (;fg + Q@a>} ﬁ(an, Jin).

(134)

The above is a Fokker-Planck equation with the
Fokker-Planck operator acting only on the angle
variable.

In order to modify the renormalization reduction
procedure of the Frobenius-Perron operator just
described into an approach suitable for our pur-
poses here, an important addition is necessary to
be worked out at this point. Since the beam-beam
potential functionally depends on the distribution
function, it itself represents a perturbation series in
€ in the sense of an order of magnitude. Thus, the
representation (96) must be replaced by

Ula,J) =W(J)+V(a,J)

+eWo(J)+W(a,J)]+.... (135)

Respectively, the Liouvillian operator can be written
as R L PN

LU:L0+L+6<MO+M), (136)
where

M = (8,W)8; — (0,W)da,
(137)

Mo = —wiy(J)a,

and
ww(J) = a]WO.

The result of adding the first-order potentials W
and W (depending on the first-order distribution
function) is the appearance of an additional term
Mo F(an, J;n) on the right-hand side of the
renormalization group amplitude equation (131).
All this term does is introduce a higher-order cor-
rection to the incoherent tune shift without chang-
ing the character of the Fokker-Planck operator in
the amplitude equation, as this operator continues
to act in the subspace of the angle variables alone.
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