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The longitudinal dynamics of an intense high energy beam moving in a resonator cavity has been studied in
some detail. Through the method of separation of variables and its obvious straightforward generalization,
a solution of the Vlasov equation for the distribution function of an intense charged particle beam in the
longitudinal direction has been obtained. The thus found Bernstein-Greene-Kruskal (BGK) equilibrium has
been utilized to construct stationary wave patterns in the special case when the velocity distribution (energy
error distribution) is Maxwellian. These are cnoidal wave patterns, showing rather intriguing and in a sense
unexpected analogy between the equilibrium wave patterns in an intense charged particle beam and similar
wave clusters originally observed in shallow water.

Based on the hydrodynamic model, fully equivalent to the coupled nonlinear system of the Vlasov equation for
the distribution function of an intense beam in the longitudinal direction and the equation for the resonator
cavity potential, an amplitude equation in the most general form has been derived. A very interesting and
important property of the nonlinear amplitude equation is the fact that it is of hyperbolic type (nonlinear wave
equation with complex coefficients) in the entire interval of admissible values for the wave number except for a
single critical point, in which it is of parabolic type (non-linear Schrodinger equation with complex coefficients).
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l. Introduction of natural radiative damping mechanisms.
Over the years, nonlinear wave phenomena, pat- Although these topics are mathematically quite
tern formation and turbulence have received scant complex, there is already a rich literature [1]-[6]
attention in high energy accelerators and storage and developed advanced methods in the field
rings, in part, because of the mathematical difficulty of plasma physics that deal with these issues,
of the subject, but also due to the fact that nonlin- although the interparticle force characteristic of
ear wave motion is commonly associated with a plasma interactions, mostly considered in these
pathological turbulent state of an accelerator that references, is due to the space charge alone. At
is best to be avoided during operation. In the case relativistic energies typical of modern accelerators,
of dynamic behavior and propagation of compar- the interaction between particles is dominated by
atively intense beam, what one mainly interested wall image currents, known in accelerator physics
in is the halo formation around the beam, either as wakefields, which complicates the nature of the
in the form of a diffuse cloud, represented mostly interaction, but can also lead to a greater variety
by a non equilibrium deviation from Gaussian of wave phenomena. If a particle accelerator is
distribution, or as small droplets of particles that operated slightly above its stability limit, due to
can occur as a kind of phase transition at the edge wakefields the most unstable wave harmonic
of the beam due to coherent interaction between grows exponentially reaching a saturated, albeit
oscillation modes or their interaction with trapped marginally steady state, as the particle distribution
particles. Furthermore, it is useful to investigate in the beam is considerably altered by the wave
the formation of an equilibrium state, if such exists, growth. If the spectrum of unstable wave modes is
between a wide range of marginally stable wave sufficiently broad, their phases become arbitrarily
modes and some weak dissipative mechanisms random, and the interaction between waves and
that can lead to a low-level weak turbulence, which particles leads to diffusion in phase space, known
in turn can affect the rate at which the halo popu- in plasma physics as quasi-linear diffusion [7]. The
lation is generated or a weak instability is excited. analogue in charged particle beams, known as the
One might expect that these phenomena are most "overshoot" phenomenon has been investigated in
prevalent in hadron machines due to the weakness Refs. [8] and [9]. Unlike the classical quasi-linear
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diffusion, the applicability of this model remains
unclear owing to the narrow unstable wave spec-
trum (and hence violation of the condition for
random phases), found in the majority of storage
rings in operation.

In hadron storage rings, the absence of damping
due to synchrotron radiation allows a practically
unhindered growth regime, as unstable waves can
grow to finite amplitudes which allows a significant
fraction of the beam to become trapped in its own
wakefield. The resulting wave motion interacts
with the trapped particles in such a way that slowly
decaying oscillations occur. This phenomenon is
known as nonlinear Landau damping in the plasma
physics literature [10]-[12] (as compared to the
linear Landau damping, which is a part of the linear
beam response [13]). It is to be expected that when
a discrete spectrum of unstable waves occurs, as is
often the case in hadron machines, this nonlinear
Landau damping may play an important role (see
e.g. Ref. [14], pages 278-291).

In all likelihood, the simplest problem to analyze
is the longitudinal-only evolution of an intense
(coasting or bunched) charged particle beam
under the influence of a broadband resonator-type
impedance - a practical situation quite common in
modern accelerators and storage rings. This model
shows a surprisingly wide variety of interesting fea-
tures, some of which have already been observed
experimentally [15], and both numerically and the-
oretically investigated [16], [17]. The case of purely
electrostatic impedance is considered in Ref. [18],
where it is shown that the evolution of the linear
charge density is described by a Korteweg-de Vries
equation. The interaction of a coasting beam with
a broad-band resonator-type impedance (of the
same type that will be considered in the present
article) has been previously studied [19] and a
Korteweg-de Vries-Burgers equation to describe
the propagation of the linear charge density in the
long-wave approximation has been derived.

A wide variety of distinct types of beam equilibria
can be detected due to the collective (nonlin-
ear) interaction between the beam particles and
the self-consistent resonator waves, induced by
the beam itself. Solutions describing analogous
types of wave-particle equilibria [Bernstein-Green-
Kruskal (BGK) regimes] are well known in plasma
physics [20] for quite some time. In a nonlinear
steady state, coherent structures of arbitrary
shape can be formed, which to a significant extent
depends on the type (Gaussian, Cauchy, etc.) of
initial velocity distribution.
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The purpose of the present article is to apply
techniques widely used in plasma physics to the
study of nonlinear waves and the formation of pat-
terns and coherent structures in intense charged
particle beams, which are in close analogy to the
well-known BGK plasma modes. In contrast to a
previous article [19], where the propagation of
an intense beam was studied in the long-wave
approximation (small wave numbers), here this
limitation is removed and the problem is treated in
all its completeness and generality.

In the following Section II., the statement of the
problem is presented, as well as some features and
basic properties of the underlying model are high-
lighted. Then, in Section lll., a simple solution of
the Vlasov equation is found using the method of
separation of variables, which is generalized later
in Appendix Vll.a). Based on this solution, it is fur-
ther shown that an intense beam excites nonlin-
ear quasi-periodic and cnoidal waves in its propa-
gation in a broad-band resonator impedance. With
the help of the renormalization group method (RG
method) in Section IV. the most general amplitude
equation is derived, which describes the evolution
of the envelope of the self-consistent resonator
field on long spatiotemporal scales. Finally, Section
V. is dedicated to conclusions and outlook.

Theoretical Model and

Basic Equations

The single particle longitudinal dynamics of a high
energy bunched beam is governed by the set of
Hamilton's equations of motion [14]

.,
o M
du KAE, |
@—_msln(ﬁZ"'@O)"_AV,

where the azimuth 6 along the accelerator circum-
ference is adopted as an independent variable play-
ing the role of time. The dimensionless canonical
variables z and u entering Egs. (1) can be expressed
as follows

AE

BT

2)

z=0— wt,

where wy is the angular revolution frequency of the
synchronous particle, 55 and E are the relative ve-
locity and the energy of the synchronous particle,
respectively, AF is the deviation from the energy
of the synchronous particle, while K = anr — 752
is the so-called slip-phase factor (o ps - momentum
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compaction factor). The quantity A Ey on the right-
hand-side of the second of Egs. (1) implies the max-
imum energy gain per turn, £ denotes the acceler-
ation harmonic and @ is the initial phase of the ac-
celerating RF field. The dimensionless variable V'
represents the wakefield voltage induced in a res-
onator cavity with shunt impedance R, resonant
frequency wgr and quality factor Q). The resonance
frequency wg can be expressed as
Vp1€

WR= TR 3)

where c is the velocity of light in vacuum, vg; =~
2.404826 is the first zero of the Bessel function
Jo(w), and R, is the cavity radius. The coupling con-
stant A reads as

B P*RKwr
21QBIEs

where ¢ is the particle charge and g is the uni-
form beam density distribution in the thermody-
namic limit.

The voltage variation per turn V (z; ) satisfies the
following equation

A= Qo; (4)

O*V — 270,V 4+ w?V = —0.1, (5)

where the beam current I can be expressed as
I1(z0) = /du(l+u)f(z,u;9). (6)

and f(z,u;0) is the beam distribution function in
the longitudinal direction. Here and in what follows
partial derivative with respect to an indicated vari-
able w will be denoted as d,,. The attenuation incre-
ment v and the dimensionless frequency w in Eq. (5)
are given by
w WR

v = 20" w = o (7)
Details regarding the derivation of the above cav-
ity impedance model can be found in Ref. [17] (see
also Ref. [21]). A much simpler and straightforward
derivation of the model can be carried out using the
theory of equivalent electrical RLC circuits [22]. For
comparison see also Ref. [23].
With due account of the Hamilton's equations of
motion (1), the Vlasov equation for beam distribu-
tion function in the longitudinal direction can be
written as follows

Oof +ul,f +VO,f =0, (8)
where
KAE, .
V=\V-— 27 2F, sin (Rz + o). 9)
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In addition, the voltage variation per turn V(z;0),
the beam current I(z; 8) and the longitudinal distri-
bution function f(z, u; 8) entering the above equa-
tions have been rescaled from their actual values
Va(2;0), I,(2;0) and f,(z, u; 0), respectively, as fol-
lows

Vo = 2qws00YRYV,
Ia = quQOL (10)
fa = QOf-

The system of self-consistent equations (5), (6) and
(8) represents a nonlinear system of Vlasov-Maxwell
type, and will constitute the starting point for our
systematic analysis in the subsequent exposition.

Il1l. Solution of the Vlasov
Equation

Ill.a) Maxwell-Boltzmann Solution of the
Vlasov Equation

Perhaps, the simplest and most efficient approach
to solve the Vlasov equation (8) is the separation of
variables method, which can be expressed in the
following representation

f(z,u;0) = g(u)¥(z;0), (11)

of the longitudinal distribution function. The conti-
nuity equation

AoV + 190,V = 0, (12)

implies a single equation for the yet unknown func-
tion ¥(z;6), where

v = [ / dug(u)]1 / duug(u) = const, (13)

is just a constant number, depending solely on the
type of the velocity distribution. Substitution of the
ansatz (11) into the Vlasov equation (8) with due ac-
count of the continuity equation (12) yields

0¥  Oug o2

= . 14
VU (Uo — u)g “ const (14)

The above separation of variables identity (14) leads
to the well-known equilibrium Maxwell-Boltzmann
distribution

¥ = Zowp [250)]. (1)

V(z;0) = 0.9(2;0),
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in the entire phase space, where the normalization
constant Z is given by the expression

2m
_ 1 o(z;0)
1 _ 9
Z —%/dzexp[ -2 ],
0

provided the velocity distribution g(u) is taken to
be normalized. Once the solution to the Vlasov
equation is obtained explicitly, the self-consistent
potential ¢(z;0) can be determined in a straight-
forward manner.

(16)

In order to determine the coordinate-dependent
part ¥(z;0) of the distribution function [equiva-
lently, the generalized potential ¢(z;6)], we sub-
stitute the Maxwell-Boltzmann distribution into the
right-hand-side of Eq. (5) governing the evolution of
the self-consistent wakefield voltage. As a result, we
obtain an equation for the generalized potential ¢,
which reads as follows

020 — 2902¢ + w0+
+ Ag[(w® — &) sin® — 27Rcos D] =

= —A(1+v0)Z0, exp <j2>,

u

(17)

where

_ KAE,

Ao = orpEE,’

d=R+ ;. (18)

Equation (17) describes the dynamics of a damped
nonlinear oscillator with exponential nonlinearity.
Let us note that for dynamical systems far from
equilibrium, the distribution function in the sub-
space of generalized velocities u is non necessar-
ily Gaussian. The case where it is determined with
accuracy up to an a priori known initial normalized
distribution is considered in Appendix Vll.a).

Ill.Lb) Nonlinear Cnoidal Waves in a Broad-

Band Resonator Impedance

The coupling parameter X is usually small, so that
it can serve as an expansion parameter to solve Eq.
(17) approximately

d(2;0) = ¢po(z;0) + Z A" G (25 0). (19)
m=1

Let us consider the solution of Eq. (17) perturba-
tively, with subsequent renormalization of the cor-
responding amplitude and phase, in the simple case
of a high-quality resonator (y — 0). In zeroth order,
we have the particular solution

¢(0) = @ cos P, (20)

R
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and correspondingly

\I/(O)(Z;H) = Zexp ﬂcos<I> . 21
Ro2

u

Using the Jacobi-Anger expansion [24] for modified
Bessel functions

(o)
eSO — I (1) + 2 Z I (w)cosm®,  (22)
m=1

we find
Ao

Zz =1, = ).
0(@03)

Here I,,(w) is the modified Bessel function of the
first kind. The general zero-order solution can be
expressed as

¢o = C cos ¢ + ¢,

(23)

(=wz+c¢c, (24

where C' and ¢ are constant (to this end) amplitude
and phase, respectively.

With the zero-order solution in hand, we again use
the Jacobi-Anger expansion (22) to decompose the
right-hand side of Eq. (17), and select the secular
terms giving rise to divergent contribution in the
perturbation solution. The secular first-order per-
turbation equation reads as

(92 + w?) 1 = —2(1 +vo) [y (;) cosC.  (25)
u
To prevent the appearance of secular terms in the
first-order solution, we need to renormalize the ar-
bitrary amplitude C' and phase ¢ using a method de-
scribed in the next Section IV.. Thus, we obtain the
following nonlinear amplitude-phase equations

2

m C
(85 +w2)0_ ﬁ — _2(1 +U0)I1 <0’2>7 (26)

M = C?(0,¢ + w), (27)

where 91 is an integration constant in the sense of
an integral of motion. The amplitude equation (26)
is also known as the nonlinear generalization of the
Ermakov-Pinney equation.

First, we consider the simple case, where the phase
variable is chosen according to the relation ¢
—wz + ¢o, implying that the integral of motion 9t =
0. Respectively, the amplitude equation (26) simpli-
fies considerably. Taking advantage of the modified
Bessel function series expansion [24]

W 1 wH 2k
n =5 grmla) - @

the nonlinear amplitude equation (26) is cast in the
form of the classical Duffing equation

92C +pC + qC* =0, (29)

©G-Labs 2024



S.I.T.etal.

J. Technol. Space Plasmas, Vol. 5, Issue 1 (2024)

Evolution in the azimuth 6 and the time ¢ of

Figure 1:
the nonlinear wave amplitude C' according to
equation (31). The typical parameters used in
the specific calculations are as follows: A =
5.033 x 107% 0, = 3.27 x 107%, K = —0.055,
¥s = 2.5.

with coefficients

1+ v

2 )

. 1+ v
- 806

p=w’+ (30)
Assuming the obvious initial conditions C'(z9) = C
and 0.C(zp) = 0, the exact solution of the Duffing
equation (29) can be expressed as [25]

C(z) = Cen[Q(z — 20), k], (31)
where cn(w, k) denotes the elliptic Jacobi cosine
function with argument w and elliptic modulus k.

Moreover, the elliptic harmonic number © and
modulus k are given by

Q =+/p+C2%,

q
k=C,|——.
2(p +C2q)

Fig. 1 shows the typical behaviour of the nonlin-
ear quasi-periodic wave for realistic beam and res-
onator cavity parameters.

(32)

Next, we consider the general case of the Ermakov-
Pinney equation for nonzero 91. Multiplying both
sides of Eq. (26) by 0,C' and integrating once using
the identity

/dwh (w) = Ip(w), (33)

we obtain the first integral of the Ermakov-Pinney

equation
2
H=(0,0+ 2
C2?
C (34)
+ w?C? + 402 (1 +vo) Iy (—2> .
Uu
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Figure 2: Evolution in the azimuth 6 and the time ¢ of the
cnoidal wave amplitude C' according to equa-
tion (37). The typical parameters used in the
specific calculations are the same as in Fig. 1.

Using the series expansion of the modified Bessel
function of zero order [24]

B =Y. o (5)"

k=0

(35)

and confining to the third term in the above expan-
sion, we cast the invariant H in the form
2
2 M
H=(0,C)"+ oz
Acting in a similar manner as the case discussed
above, we assume again that 9,C(zp) = 0. Then,
it can be verified by direct substitution that the
Ermakov-Pinney equation corresponding to the in-
tegral of motion (36) possesses an exact solution in
the form of a cnoidal wave

| Xo = k2X3sn?[v(z — 20), k]
C(z) = \/ 1—E2s02[v(z — 20), ke]

+pC2 + gc‘*. (36)

(37)

where sn(w, k) denotes the elliptic Jacobi sine func-
tion with argument w and elliptic modulus k. The
frequency v and the elliptic modulus k. are given
by the expressions

C?2 - X,

C? — X3’
(38)

The constants X5 and X3 entering the equations

above can be expressed as follows

2
q q
The analogy with the surface gravity waves on shal-
low water is quite interesting and impressive. De-
spite the fact that cnoidal waves have been pro-

posed by Korteweg and de Vries in 1895 and later
modified by Benjamin, Bona and Mahony in 1972

V= —q(C2 _X3)7

2 be =

1
X23=—3 [62 +
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in a different context [26], [27], it is intriguing that
they can play an important role in wave generation
and propagation in intense charged particle beams.
If the Cauchy distribution (77) is used instead
of the Maxwell-Boltzmann distribution, the right-
hand-side of Eq. (17) can be written as follows

—1/2
(1—%) ] (40)
O-U

If necessary, one could rework all the details of the
procedure described above and clarify the equilib-
rium self-consistent wave patterns in the case of a
Cauchy distribution function.

RHS(17) = —A(1 + v0) 20-

IV. The Nonlinear Wave
Equation with Complex
Coefficients

In a number of particular cases, the excessively rich
information about the evolution of a given system,
which the kinetic approach provides, is not so nec-
essary, and then it is convenient to pass to the hy-
drodynamic description of the underlying motion.
Especially if an exact hydrodynamic closure exists,
such a representation proves extremely useful and
preferable. Let us consider the case where the
distribution function f(z, u; 8) has constant phase-
space density (independent of the canonical vari-
ables and the time) within a region bounded by
simply-connected boundary curves in phase space
and zero phase-space density outside. Since the
boundary curves are evolving phase-space trajec-
tories, this model is sometimes called the pulsat-
ing water-bag model. It is particularly remarkable
because it provides an exact hydrodynamic closure
[14], [28], which is fully equivalent to the Vlasov
equation (8) coupled to the equation for the wake-
field voltage variation (5). The gas dynamic equa-
tions read as

OpR + 0,(RU) =0, (41)

U +U0.U 4+ v7.0,(R?*) = AV — Aysin @, (42)
O*V — 270,V 4+ w?V = OyR — 0. R, (43)

where R and U are the beam particle line density
and the current velocity, respectively, expressed ac-
cording to the relations

R:/duf(z,u;ﬁ), RU:/duuf(z,u;G).
(44)
In addition, the quantity vr is the normalized ther-
mal velocity. In what follows, we shall consider the
applied external RF electromagnetic field [the last
term on the right-hand-side of Eq. (42)] sufficiently
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small and not affecting the generation and dynamic
evolution of nonlinear wave patterns. This is equiv-
alentto allowing for long bunches, or in other words
a quasi-coasting beam to the first approximation.
Let us introduce the scaling [29], [30]

R—1+¢€R, U— €U, V — €V, (45)

of hydrodynamic variables and resonator cavity
voltage, where € is a formal small parameter to be
introduced further, which at the end of all order-of-
magnitude calculations will be set to unity. The hy-
drodynamic equations can be rewritten as follows

OpR + 0,U = —€d,(RU), (46)
0pU + 2020, R — \V =
) ) (47)
= —€[U0.U + v3.0.(R?)],
O’V — 290,V 4+ w?V — yR+ 9,R=0. (48)

Next, we differentiate Eq. (46) with respect to § and
Eq. (47) with respect to z, respectively, and manipu-
late the resulting equations in an obvious manner.
As a result, we obtain

OR - 2.V = o)
= €0.[0p(RU) — U0.U — v3.0.(R?)].
where the d’Alembert operator reads as
0 = 20202 — 2. (50)

Combining Egs. (48) and (49), we arrive at the basic
equation

(EIZ - Aﬁ)V -

. (51)
=eD[0p(RU) — UD.U —v}0.(R?)],

to be analysed in what follows. Here, the additional
operators are defined as follows

Z=0>-290.+w®, D=20.0—0.). (52)

Following the standard procedure of the renormal-
ization group (RG) method [14], [25], [31], [32],
the hydrodynamic quantities together with the res-
onator cavity voltage are represented as a pertur-
bation expansions

R = i €"R,,, U = i €"Up,
m=0

m=0

V= i €M V. (53)
m=0

The next step in the derivation of the fundamental
nonlinear amplitude equation, describing the evo-
lution of an intense beam in a resonator cavity with
a relatively small @ factor, consists in expanding
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Eg. (51) in the small parameter ¢, and obtaining
its naive perturbation solution order by order. As
a rule, the zeroth order consists in establishing
the linear dispersion relation, which defines the
fundamental oscillation (wave) modes in the linear
approximation. Once the linear dispersion relation
is established and the fundamental modes are
found, the next order includes regular terms
comprised of harmonics and possible combina-
tions of the basic modes in case these are more
than one. Usually, at second order secular terms
proportional to the fundamental modes appear,
which are impossible to be removed with means
that might be at hand. Thus, one resorts to their
resummation using the prescriptions of the renor-
malization group (RG) method. We follow here an
elegant approach, known as the proto RG operator
scheme [25], [31], [32], which has been proposed
in the early 2000s to free as much as possible the
standard RG theoretical reduction procedure from
the necessity of explicit (in the majority of cases,
rather cumbersome) calculation of secular terms.
Since the procedure described above involves long
and cumbersome but quite standard algebraic
manipulations, it is set out in Appendix VIII..

The cornerstone of the proto RG operator approach
is the formal second-order secular solution (102).
Here we present only a brief description of the
renormalization procedure; the interested reader
can consult the references cited above, where fur-
ther details and other interesting applications of the
proto RG operator approach can be found. Since,
according to the zeroth-order perturbative solution
(87) the complex amplitude A (regarded as a free
parameter) is constant with respect to the variables
z and 6, the solution of Eq. (102) will contain secu-
lar (proportional to powers of the spatial and tem-
poral variables) terms, which must be resummed
appropriately. The standard procedure of renor-
malization consists in the first place in the intro-
duction of the free parameters zr and 6y and the
renormalized amplitude Agr according to the rela-
tion A = FAg, where § is the so-called renormal-
ization constant. Omitting the first-order solution,
which is regular and thus independent of the free
parameters just introduced, we can rewrite Eq. (53)
as follows

V(2;0) = Ag(zp; 0r)e'F=7) 4 €.

) (54)
[P(2;0) — P(zg; GR)]eZ(Kzfm) + .- +ece.

Let D = D(Q + idy,,, K — id.,,) denotes the for-
mal dispersion operator on the left-hand-side of
equation (102) with z and 6 being replaced by zp
and fg. Provided that V (z;0) should not depend
on the renormalization parameters, and acting on
both sides of Eq. (54) appropriately, we obtain
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0=DRrV = Dr[Ag — €P(zr;0r|r)]e. (55)

Replacing back the original independent variables
and making use of equation (102), we arrive at the
sought for nonlinear amplitude equation

D(Q +i0p, K — i0.)A = —G|APAc®™.  (56)

This is the most general amplitude equation de-
scribing the formation and evolution on relatively
long spatio-temporal scales of coherent patterns
and structures in intense beams of charged parti-
cles.

Strictly speaking, Eq. (56) is a fourth-order par-
tial differential equation with complex coefficients.
Usually, the higher order derivatives of third and
fourth order, respectively, can be neglected as be-
ing significantly smaller than the others. For exam-
ple, a generic dispersion operator of order N can
be expanded in a Taylor series as

D(Q + iy, K — id,) =
N ik . (57)
=> £1(9000 — 0:0x) " D(Q, ).

Restricting ourselves to second order, we cast the
amplitude equation (56) in the form

i(b@e _ D’@Z)A—

- %(1’533 — 2D/ 050, + D"ag)A (58)

= —G|A]? A,

Here, the "raised dot" implies derivative with re-
spect to the wave frequency 2, while the "prime"
stands for derivative with respect to the wave num-
ber K. The type of the above equation depends
on the sign of the so-called discriminant Ap =
D2 — DD”. Notice also that in general the second
order amplitude equation may be of one type at a
specific point in the wave frequency-wave number
(2, K)-space, and of another type at some other
point. All of this depends on the wave number K
because the wave frequency €2 is tied to it by virtue
of the dispersion equation (84). Fig. 3 shows an ex-
tremely interesting property of the nonlinear ampli-
tude equation (58). The latter is of hyperbolic type in
the entire interval of admissible values of the wave
number K, except for a single point K., whereitis
of parabolic type.

To get a clearer idea of what is actually happening,
let us similar to Ref. [25], introduce the new variable
N/

(=z+ab, where a=—, (59)
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Re(Ap
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1000}
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Figure 3: Dependence of the discriminant of Eg. (58) on
the wave number K in the limit v — 0. The
same parameters as in Figs. 1 and 2 are used in
the construction of the graphical dependence
Ap(K). It can be seen that the discriminant
is positive over the entire range of admissible
values of the wave number except for a single
point.

while the azimuthal variable 6 remains unchanged.
Then, the operator in the second brackets of Eq.
(58) is transformed as

. A
Do — ?Dag. (60)
Suppose that the discriminant Ap > 0 imply-
ing that the nonlinear amplitude equation is of
hyperbolic type. Indeed, the operator in (60) is
proportional to the d'Alembert operator, which
means that Eq. (58) is a nonlinear wave equation

with complex coefficients.

Considering the point K. at which Ap = 0, we
define the new variable

D//

O = 2+ b0, =—.
D/

where b (61)
while the variable z remains unchanged. Then, the
operator in the second brackets of the nonlinear
amplitude equation (58) simply becomes D92
In this case, the nonlinear amplitude equation
becomes a nonlinear Schrodinger equation with

complex coefficients.

In summary of all that has been said and worked
out above, it can be confirmed that the amplitude
equation (58) is a wave equation with complex coef-
ficients over the entire range of values for the wave
number K except for the critical point K., where it
transforms into a nonlinear Schrodinger equation
with complex coefficients. In the limit of v — 0 the
coefficients in the nonlinear Schrodinger equation
become real. It is well known that it possesses soli-
ton solutions, which are exact solutions decaying
to a background state. In the same nondissipative
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limit, the coefficients in the nonlinear wave equa-
tion are real parameters as well. A similar nonlinear
wave equation in a different context was proposed
recently in Ref. [25], where it is shown that its solu-
tions are nonlinear quasi-periodic or cnoidal waves,
which were already described in the previous Sec-
tion.

V. Concluding Remarks

In the present work, we have delineated several
different levels of nonlinearity in coherent in-
teractions in intense high-energy beams. Apart
from the general academic interest in nonlinear
dynamics, for which high-energy beams provide
an excellent test-bed, there are a number of other
areas and potential implementations where the
study of nonlinear wave, wave-particle patterns
and coherent structures can find applications in
accelerator physics.

We have studied the longitudinal dynamics of an
intense high energy beam moving in a resonator
cavity. The coupled Vlasov equation for the longi-
tudinal distribution function and the equation for
the resonator voltage have been solved by closely
following the method of separation of variables,
which has been further generalized according
to a technique proposed by Karimov and Lewis
[33]. The key point of this method consists in the
representation of the distribution function as a
power series in the resonator potential. Further,
self-consistent stationary nonlinear wave patterns
have been found in the simplest equilibrium case
of Maxwellian distribution in velocity (energy error)
space. Very intriguing and somewhat unexpected
is the analogy between the equilibrium wave pat-
terns in an intense beam of charged particles and
the cnoidal waves originally observed on shallow
waters. The main peculiarity of cnoidal waves as
compared to standard nonlinear quasi-periodic
waves is that the surface elevation of the wave is
always positive, which suggests a similarity with
the well-known feature of single solitons as a
special limit of more general waveforms commonly
referred to as cnoidal waves or Turing rolls. One
might expect that different travelling waveforms
would appear provided the distribution function
were of Cauchy type, for example, instead of
Maxwell-Boltzmann one.

As a result of the methodical treatment of the
hydrodynamic model, fully equivalent to the cou-
pled nonlinear system of Vlasov equation and
the equation for the resonator cavity potential,
an amplitude equation in the most general form
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has been derived. It is important to note here
that the nonlinear amplitude equation governing
the evolution of the hydrodynamic variables on
slower spatiotemporal scales is derived without
any initial assumptions and/or approximations.
A very interesting and important property of the
amplitude equation is identified (see Fig. 3): it
is of hyperbolic type (nonlinear wave equation
with complex coefficients) in the entire interval
of admissible values of the wave number except
for a single critical point K., in which it is of
parabolic type (non-linear Schrodinger equation
with complex coefficients).

Anumber of pressing issues in the construction and
operation of modern hadron colliders come into
play in the development of the model described
in the present article, and the situation is ripe for
careful experimental testing. The benefit of this re-
search is the understanding of the importance of
nonlinear waves and coherent structures in the lim-
iting parameters of a given accelerator or storage
ring.
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VII. Appendix

Vil.a) Generalization of the Separation of
Variables Method

A further possible generalization [33] of the sepa-
ration of variables ansatz (11) is suggested by the
form of the solution (15) of the Vlasov equation. We
assume that the distribution function can be repre-
sented as a power-series expansion

flz,w;0) =2 Z gn (W)™ (2 6), (62)
n=0

in the alleged small generalized potential ¢(z;6)
with yet unknown coefficients g, (u) depending on
the canonical variable u only. The continuity equa-
tion

89/duf(z,u;9)Jraz/lduuf(z,u;ﬂ):O, (63)

following directly from the Vlasov equation (8) ac-
quires the form

0+ vo(2;0)0.¢ = 0. (64)
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Here

S kAR (2:0)
vo(2:0) = 222 : (65)
kBydh—1 (2 0)
k=0

A= [duug, B= [dug(. 6o

Next, we substitute the generalized separation of
variables ansatz defined according to Eq. (62) into
the Vlasov equation (8). Taking into account (64), we
obtain

(= v0) 3 kgi(u)g" " (2 0)+
S ©7
k gr\U

In order to determine the unknown functions
gk (u), we raise the assumption that vy in Eq. (65)
does not depend on ¢(z;0) and without loss of
generality we assume vy = const. This assertion
will be proved a posteriori to hold.

Equating coefficients in front of equal powers of ¢
in Eqg. (67) yields the following recurrence relation

1

gr(u) = Eﬁgk—l(u), (68)
where the operator
~ 1 d
vo — u du
have been introduced.
The recurrence relation (68) yields
1 ~k
gr(u) = ED go(u). (70)

Thus, we finally arrive at the general solution of the
Vlasov equation

k(. p) .
o) = > ED ) -
k=0 ’ (71)

= exp {(b(z; 9)’13} go(u).

What remains now is to verify the conjecture vy =
const. It suffices to note that [33]

A = % duu@kgo(u) =
- % /duvoli u % {75]67190(“)} - (72)
-5 o .
B, = —;/(wi%ﬁk_lgo(u). (73)
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The proportionality between the two coefficients
Ay and By,

Ak = ’U()Bk, (74)

is retained for each k as evident from the last two
expressions, implying that the ratio (65) is actually
a constant.

Clearly, the solution (71) is uniquely determined by
the generic function go(u). The simplest choice is
when go(u) is the Maxwellian distribution (15), that
is go(u) itself is an eigenfunction of the operator D
with an eigenvalue J;Q [c.f. equation (14)]. In this
case we immediately recover the distribution (11)
with (15) and the normalization condition (16).

The next rather interesting example is when the
generic distribution go(u) is the Cauchy probability
distribution

go(u) = Ouw_ 1
' T (=)t g
/dugg(u) =1.

It can be easily verified (by induction) that the func-
tions g, (u) can be expressed in terms of go(u) ac-
cording to the relation

2r\"
gn(u)<0> 96+ (u). (76)
Substituting Eq. (76) back in Eq. (62), we obtain
" Z
Flzou;0) =7 (77)

T (u—vg)’ + 02 —2¢

Interestingly enough, the Vlasov distribution func-
tion is again a Cauchy probability distribution in mo-
mentum space u, with a modified by the general-
ized potential ¢, full width at half maximum. The
normalizability condition (16) can be expressed now

as
2m
Z-1_ Ou / dz
) \JoR 26
0

The two examples, namely the Gaussian and the
Cauchy probability distributions discussed above
suggest a final generalization.  Suppose that
the function go(u) is an arbitrary function of
a(u —vg)? /2, that is

(78)

w = g(u — 00)2, (79)

where a = const. Taking into account that

EVE (L) 7w o0
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from Eq. (62) we readily obtain

f(zu;0) =
_Z;T¢ (z,a)(dw) F(w) (81)
= ZFw — ap(z; 0)].

Given the condition (64), this result is not unex-
pected and essentially represents the general solu-
tion of the Vlasov equation.

Derivation of the Gener-
alized Nonlinear Ampli-
tude Equation

VIIlL.

In this Appendix, the details of the derivation of the
amplitude equation describing the slow evolution of
patterns in an intense beam traversing a resonator
cavity with small @ factor, are presented.

Zeroth Order.
The zeroth-order basic perturbation equation (51)
can be written as

(Eli - Aﬁ)Vo —0. (82)

The solution of Eq. (82) i_s usually soughtin the form
of a travelling wave ~ e'? with phase
o= Kz— Q6. (83)

The wave number K and the wave frequency {2 sat-
isfy the dispersion equation

D(Q, K) =0(Q, K)Z(K) — AD(Q,K) = 0, (84)

where
O, K) = Q% — 203.K2, (@5)
D(Q,K)=K(Q+K),
Z(K)=w? - K? - 2iyK, (86)

The dispersion equation (84) is a quadratic equa-
tion in terms of the frequency {2 as a function of the
wave number K. Observe that, if Q(K) is a solution
of Eq. (84), solution is —Q2* (— K) as well. Taking into
account this fact, Eq. (82) can be readily solved to
yield

Vb:Aei(Kz—QQ)+A*e—i(Kz—Q*0). (87)

Here

1

Q=—
27

{/\KJF VK2 HAK2Z(0 4+ 203.2) |, (89)

while the quantity A is an arbitrary complex con-
stant.
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From Egs. (46) and (48) for the zeroth-order particle
density Ry and current velocity Uy, we obtain

o i * gk —ic”
Rofz(rer —rpAe ),

_ Z(K) (89)
To = QO —i—K’
Uy = i(quei” — uSA*e_i”*),

_ QZ(K) (30)
WTKOQ+TK)

First Order.
The first-order basic perturbation equation (51) can
be written as

(Ifli - Aﬁ)vl _
_ o1
=D[0y(RoUo) — Upd.Uy — v7.0.(R3)],

In order to better navigate the situation, let us write
out the right-hand-side of the above equation in
a detailed explicit form using the already known
zeroth-order solutions for the density and the cur-
rent velocity

(lfli _ )\ﬁ)Vl -

4iz° 2 2,2\ 42,2ic
= Q+K(3Q + 2K%v7) A% + c.c.,

(92)

where "c.c." stands for the complex conjugate coun-
terpart. The regular first-order solutions are

T QifQK D?g;jif;fi) A2*7 e, (93)
Ry = r A%e% 4+ c.c., (94)
Uy = u A2 + c.c., (95)
where
L 27y 30 42K
' 20+ K)POBK? +27K)" (96)
Zy = Z(2K),
v — 0z? i Zy 30° + 2Kfu% -
K(Q+ K) 2 O(BK2? + 2ivK)

Second Order. Derivation of the Amplitude Equation.
The second-order basic perturbation equation (51)
for the hydrodynamic quantities and the resonator
cavity voltage read as

(ﬁi . Aﬁ)vg = D|[0s(RoU, + UpRy)

—8Z(U0U1) — 2v%8Z(ROR1)], (98)

In first-order we encountered only regular terms,
which follow the second harmonic pattern (propor-
tional to e?'?) of the basic mode in linear approxi-
mation. However, the situation in second order is
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different. Here, two types of terms, resonant (pro-
portional to €?°) and regular on the right-hand-side
of the second-order equation (98) are present. In
order to avoid divergent contributions in the per-
turbation solution, the secular terms must be renor-
malized away by the elegant renormalization group
procedure. It is necessary to represent the right-
hand-side of Eq. (98) in explicit form using the al-
ready known solutions from previous orders and
then to isolate the secular contributions. Omitting
straightforwardly reproducible calculation’s details,
we write down the resonant part of Eq. (98) as

(az - Aﬁ)v2 = —G|APAei e (99)

where

G =K(K+Q+ 2iD)[(Q + 2iT) (rfus + ugr1)
+K (uguy + 2v3rir)], (100)

and I' = Im(2) is the imaginary part of the wave
frequency, which is considered to be small. Here
we note that the operator on the left-hand-side of
Eg. (99) is actually the dispersion function (84) in
which K is replaced by —i0, and €2 replaced by 70,
respectively. Equation (99) possesses an exact solu-
tion of the form

Va(z;0) = P(z; )’z (101)
Considering that the differential operators acting
on the right-hand-side of the above equation are
transformed as 9, — 0, +iK and 99 — 9y — i1,
the amplitude P(z; 0) must satisfy the equation

D(Q+idp, K —i0,)P = —G|A?Ae*™.  (102)

The above equation represents the formal second-
order secular solution, which is a subject of renor-
malization using the renormalization group proce-
dure.
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