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In this letter we present measurements of the influence on inhomogeneous electrode 

biasing on the basic plasma parameters of inverted fireballs in a hydrogen plasma. The 

measurements were performed in hydrogen because it is often used in many reactive 

plasmas, which are very important for technical or industrial applications. The 

dependence of the plasma parameters on voltages and currents on the electrodes are 

described in this work. It will be shown that the density profiles and the plasma 

potentials inside an inverted fireball can be shaped to a certain extend by asymmetric 

potentials on the anode.  

DOI: 10.31281/hat5v156  

 

1
jgruenwald@g-labs.eu  

 

I. Introduction 

In recent years inverted fireballs (FBs) have 

been proven to be viable tools for surface 

modifications [1-5] but only little data has 

been published on the basic plasma 

parameters of inverted FBs [6,7]. 

Additionally, some more recent work has 

been done to understand the energy 

deposition and plasma creation in inverted 

FBs using sophisticated particle-in-cell 

simulations [8,9]. Inverted FBs provide a very 

homogeneous plasma over a large area with 

high plasma densities. However, it will be 

demonstrated in this letter that it is possible, 

to a certain extent, to shape the profiles of 

the plasma potential, the electron 

temperature and the plasma density with 

asymmetric biasing of the FB anode, i.e. 

applying different potential on different 

sections of the grid electrode.  

 

II. Experimental setup 

All experiments have been conducted in a 

hot filament UHV vacuum chamber with a 

base pressure of 10
-8

 mbar and equipped 

with a standard movable Langmuir probe 

system with a 10 mm long tungsten tip with 

0.15 mm diameter. Both have been 

described in more detail in [7]. The inverted 

FBs haven been created in hydrogen at a 

working gas pressure of 5 x 10
-2

 mbar. The 

Langmuir probe was inserted from the side 

into the inverted FB through a hole on the 

side of the 10 x 10 x 10 cm³ gridded anode 

(grid wire: 60 µm diameter and 130 µm grid 

spacing). This so-called ‘bottom’ electrode 

was electrically insulated from the rest of the 

grid and could, thus, be biased 

independently. An inverted FB is created by 

accelerated electrons from the background 

plasma that are oscillating through the grid. 

A photograph of the gridded cube and a 
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sketch of the Langmuir probe tip are 

depicted in Fig. 1.  

III. Results and Discussion 

During the experiments the following 

physical parameters were recorded: The 

current and voltage on the ‘top’ electrode 

(Itop, Utop), the current and voltage at the 

‘bottom’ electrode (Ibot, Ubot) and the plasma 

current in the chamber (Ifil, Ufil). 

Furthermore, the plasma potential Upl, the 

electron temperature Te and the electron 

density ne have been measured with the 

Langmuir probe system. From the latter two 

the Debye length has been calculated The 

following Table 1 shows these parameters 

for a series of four measurements. 

The parameters in Table 1 have been chosen 

because it was observed that the 

confinement of the inverted FB was best at 

these values. The first important quantity to 

look at is the plasma potential. Its profile 

along the trail of the probe is shown in Fig. 

2a). It can be seen that the plasma potential 

is very homogeneous within the inverted FB 

at a quite high level. As the potential jump in 

a FB occurs in the double layer, which forms 

its border [10] this is a good indication of the 

actual spatial size of such a FB. The 

magnitudes of the potential jumps are as 

follows: 

From 42.3 V to 59.5 V (= 17.2 V) in 1 

From 44.5 V to 60.0 V (= 15.5 V) in 2 

From 59.2 V to 75.2 V (= 16.0 V) in 3 

From 76.7 V to 81.2 V (= 4.50 V) in 4 

Measurement Ubot [V] Ibot [mA] Utop [V] Itop [mA] Ufil [V] Ifil [mA] 

1 30.8 7 58.2 546 -13.5 484 

2 50 48 58.7 541 -11.5 505 

3 74.2 106 72.2 278 -18.2 322 

4 79.8 322 74.5 376 -7.5 543 

Table 1: Measured potentials (with respect to ground) and currents. 

Figure 1 A photograph of the electrode configuration [a)] and a sketch of how the Langmuir probe was 

inserted into the inverted FB [b)]. The hot cathode was located 50 cm above the gridded electrode in all of 

the experiments. 
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Fig. 2b) shows the electron temperature as 

obtained from the I-V probe traces. As the 

incoming electrons gain a lot of kinetic 

energy in the double layer surrounding the 

FB, their temperature will increase 

accordingly there. However, this energy is 

rapidly dissipated by the numerous inelastic 

collisions within the FB which causes the 

electron temperature to decrease very fast 

inside the surface of the inverted FB. In the 

following Fig. 2c) the electron density is 

displayed. The peak density as well as the 

onset of the density increase tends to shift 

towards the inside of the cage due to the 

slightly higher positive potential on the "top" 

electrode. The same behaviour is to be seen 

in the positions of the plasma potential 

jumps in Fig. 2a). When the potential 

difference is small like in curve 4, the shape 

of the density distribution will become more 

symmetric and the maximum density is 

reached at the maximum value of Ibot. This is 

indeed interesting, since the currents on the 

‘bottom’ electrode do not behave as 

monotonically. The electron density in 

measurement 4 rises by a factor of up to 

nearly 100 in the center of the FB compared 

to the background plasma, which is 

produced by the DC discharge (from 6.6 x 

10
13

 to 8.2 x 10
15

 m
-3

). Furthermore, the 

position of the raise in plasma potential and 

electron density shifts towards the ‘bottom’ 

anode with increasing positive bias. Hence, it 

was shown that there is the possibility of 

shaping the density profile and the range of 

plasma potential homogeneity to some 

extend with asymmetric biasing of certain 

areas of an inverted FB electrode. This might 

lead to interesting new possibilities in the 

field of plasma enhanced chemical vapour 

deposition technologies. 

The Debye length λD, which is the crucial 

parameter for the confinement of the 

inverted FB also peaks near the vicinity of 

the grid inside the inverted FB. This peak 

shifts as well towards the mesh with 

increasing Ubot. Since λD has to be at least 

Figure 2: Plasma potential [a)], electron temperature [b)], electron density [c)] and the Debye length [d)] in 

dependence on the probe position in the vacuum chamber. 
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half of the grid constant in the plane of the 

anode mesh in order to trap the inverted FB, 

the trapping mechanism will become more 

inefficient if this length becomes too small 

or moves too far away from the grid. This 

sets a physical limitation to the tailoring of 

the shape of electron densities and plasma 

potentials inside an inverted FB and has to 

be kept in mind, especially when it comes to 

technical applications, such as deposition or 

other forms of surface modification where 

the plasma homogeneity over a large area is 

of importance. 
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